Date of Government Version: 05/17/05 Date Data Arrived at EDR: 06/20/05 Date Made Active in Reports: 08/17/05

Number of Days to Update: 58

Source: EPA

Telephone: 703-413-0223 Last EDR Contact: 09/20/05

Next Scheduled EDR Contact: 12/19/05 Data Release Frequency: Quarterly

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 06/28/05 Date Data Arrived at EDR: 07/05/05 Date Made Active in Reports: 08/08/05

Number of Days to Update: 34

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 09/06/05

Next Scheduled EDR Contact: 12/05/05 Data Release Frequency: Quarterly

RCRA: Resource Conservation and Recovery Act Information

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS). The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month. Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month. Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. Transporters are individuals or entities that move hazardous waste from the generator off-site to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 05/20/05 Date Data Arrived at EDR: 05/24/05 Date Made Active in Reports: 06/09/05

Number of Days to Update: 16

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 08/23/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: Quarterly

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 12/31/04 Date Data Arrived at EDR: 01/27/05 Date Made Active in Reports: 03/24/05

Number of Days to Update: 56

Source: National Response Center, United States Coast Guard

Telephone: 202-260-2342 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: Annually

FEDERAL ASTM SUPPLEMENTAL RECORDS

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/03 Date Data Arrived at EDR: 06/17/05 Date Made Active in Reports: 08/04/05

Number of Days to Update: 48

Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 09/12/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Biennially

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 12/14/04 Date Data Arrived at EDR: 02/15/05 Date Made Active in Reports: 04/25/05

Number of Days to Update: 69

Source: Department of Justice, Consent Decree Library

Telephone: Varies

Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: Varies

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 06/08/05 Date Data Arrived at EDR: 07/11/05 Date Made Active in Reports: 08/08/05

Number of Days to Update: 28

Source: EPA

Telephone: 703-416-0223 Last EDR Contact: 07/06/05

Next Scheduled EDR Contact: 10/03/05 Data Release Frequency: Annually

DELISTED NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 07/01/05 Date Data Arrived at EDR: 08/03/05 Date Made Active in Reports: 08/22/05

Number of Days to Update: 19

Source: EPA Telephone: N/A

Last EDR Contact: 08/03/05

Next Scheduled EDR Contact: 10/31/05 Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 07/11/05 Date Data Arrived at EDR: 07/19/05 Date Made Active in Reports: 08/08/05

Number of Days to Update: 20

Source: EPA Telephone: (212) 6

Telephone: (212) 637-3000 Last EDR Contact: 07/05/05

Next Scheduled EDR Contact: 10/03/05 Data Release Frequency: Quarterly

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 06/27/05 Date Data Arrived at EDR: 07/22/05 Date Made Active in Reports: 09/01/05

Number of Days to Update: 41

Source: U.S. Department of Transportation

Telephone: 202-366-4555 Last EDR Contact: 07/22/05

Next Scheduled EDR Contact: 10/17/05 Data Release Frequency: Annually

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 07/14/05 Date Data Arrived at EDR: 07/22/05 Date Made Active in Reports: 08/22/05

Number of Days to Update: 31

Source: Nuclear Regulatory Commission

Telephone: 301-415-7169 Last EDR Contact: 07/05/05

Next Scheduled EDR Contact: 10/03/05 Data Release Frequency: Quarterly

MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 05/13/05 Date Data Arrived at EDR: 06/27/05 Date Made Active in Reports: 08/08/05

Number of Days to Update: 42

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959 Last EDR Contact: 09/27/05

Next Scheduled EDR Contact: 12/26/05 Data Release Frequency: Semi-Annually

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner receives notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/91 Date Data Arrived at EDR: 02/02/94 Date Made Active in Reports: 03/30/94

Number of Days to Update: 56

Source: EPA

Telephone: 202-564-4267 Last EDR Contact: 08/22/05

Next Scheduled EDR Contact: 11/21/05
Data Release Frequency: No Update Planned

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 03/30/05 Date Data Arrived at EDR: 05/10/05 Date Made Active in Reports: 05/24/05

Number of Days to Update: 14

Source: EPA

Telephone: 202-564-3887 Last EDR Contact: 08/25/05

Next Scheduled EDR Contact: 11/07/05 Data Release Frequency: Annually

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 10/01/03 Date Data Arrived at EDR: 11/12/03 Date Made Active in Reports: 11/21/03

Number of Days to Update: 9

Source: USGS

Telephone: 703-692-8801 Last EDR Contact: 08/09/05

Next Scheduled EDR Contact: 11/07/05 Data Release Frequency: Semi-Annually

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized. In 1978, 24 inactive uranium mill tailings sites in Oregon, Idaho, Wyoming, Utah, Colorado, New Mexico, Texas, North Dakota, South Dakota, Pennsylvania, and on Navajo and Hopi tribal lands, were targeted for cleanup by the Department of Energy.

Date of Government Version: 12/29/04 Date Data Arrived at EDR: 01/07/05 Date Made Active in Reports: 03/14/05 Number of Days to Update: 66 Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 09/19/05

Next Scheduled EDR Contact: 12/19/05
Data Release Frequency: Varies

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258

Subtitle D Criteria.

Date of Government Version: 06/30/85 Date Data Arrived at EDR: 08/09/04 Date Made Active in Reports: 09/17/04

Number of Days to Update: 39

Source: Environmental Protection Agency

Telephone: 800-424-9346 Last EDR Contact: 05/23/95 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers

is actively working or will take necessary cleanup actions.

Date of Government Version: 12/31/04 Date Data Arrived at EDR: 06/29/05 Date Made Active in Reports: 08/08/05

Number of Days to Update: 40

Source: U.S. Army Corps of Engineers

Telephone: 202-528-4285 Last EDR Contact: 06/29/05

Next Scheduled EDR Contact: 10/03/05 Data Release Frequency: Varies

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater

than 640 acres.

Date of Government Version: 10/01/03 Date Data Arrived at EDR: 11/12/03 Date Made Active in Reports: 11/21/03

Number of Days to Update: 9

Source: USGS

Telephone: 202-208-3710 Last EDR Contact: 08/09/05

Next Scheduled EDR Contact: 11/07/05 Data Release Frequency: Semi-Annually

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental

media or effect human health.

Date of Government Version: 01/10/05 Date Data Arrived at EDR: 02/11/05 Date Made Active in Reports: 04/06/05

Number of Days to Update: 54

Source: Environmental Protection Agency

Telephone: 703-603-8867 Last EDR Contact: 07/05/05

Next Scheduled EDR Contact: 10/03/05 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources

Date of Government Version: 04/17/95

Date Of Government Version. 04/17/95 Date Data Arrived at EDR: 07/03/95 Date Made Active in Reports: 08/07/95

Number of Days to Update: 35

Source: EPA

made it impossible to continue to update the information contained in the database.

Telephone: 202-564-4104 Last EDR Contact: 09/06/05

Next Scheduled EDR Contact: 12/05/05 Data Release Frequency: No Update Planned

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/03 Date Data Arrived at EDR: 07/13/05 Date Made Active in Reports: 08/17/05

Number of Days to Update: 35

Source: EPA

Telephone: 202-566-0250 Last EDR Contact: 09/19/05

Next Scheduled EDR Contact: 12/19/05 Data Release Frequency: Annually

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant

site.

Date of Government Version: 12/31/02 Date Data Arrived at EDR: 04/27/04 Date Made Active in Reports: 05/21/04

Number of Days to Update: 24

Source: EPA

Telephone: 202-260-5521 Last EDR Contact: 07/18/05

Next Scheduled EDR Contact: 10/17/05 Data Release Frequency: Every 4 Years

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Date of Government Version: 07/15/05 Date Data Arrived at EDR: 07/25/05 Date Made Active in Reports: 08/22/05

Number of Days to Update: 28

Source: EPA

Telephone: 202-566-1667 Last EDR Contact: 09/19/05

Next Scheduled EDR Contact: 12/19/05
Data Release Frequency: Quarterly

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/03 Date Data Arrived at EDR: 01/03/05 Date Made Active in Reports: 01/25/05

Number of Days to Update: 22

Source: EPA

Telephone: 202-564-4203 Last EDR Contact: 07/18/05

Next Scheduled EDR Contact: 10/17/05 Data Release Frequency: Annually

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 07/15/05 Date Data Arrived at EDR: 07/25/05 Date Made Active in Reports: 08/22/05

Number of Days to Update: 28

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667 Last EDR Contact: 09/19/05

Next Scheduled EDR Contact: 12/19/05 Data Release Frequency: Quarterly

STATE OF NEW YORK ASTM STANDARD RECORDS

SHWS: Inactive Hazardous Waste Disposal Sites in New York State

Referred to as the State Superfund Program, the Inactive Hazardous Waste Disposal Site Remedial Program is the cleanup program for inactive hazardous waste sites and now includes hazardous substance sites

Date of Government Version: 06/20/05 Date Data Arrived at EDR: 06/23/05 Date Made Active in Reports: 07/21/05

Number of Days to Update: 28

Source: Department of Environmental Conservation

Telephone: 518-402-9622 Last EDR Contact: 09/14/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Annually

SWF/LF: Facility Register

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 07/13/05 Date Data Arrived at EDR: 08/01/05 Date Made Active in Reports: 09/01/05

Number of Days to Update: 31

Source: Department of Environmental Conservation

Telephone: 518-457-2051 Last EDR Contact: 08/01/05

Next Scheduled EDR Contact: 10/31/05 Data Release Frequency: Semi-Annually

LTANKS: Spills Information Database

Leaking Storage Tank Incident Reports. These records contain an inventory of reported leaking storage tank incidents reported from 4/1/86 through the most recent update. They can be either leaking underground storage tanks or leaking aboveground storage tanks. The causes of the incidents are tank test failures, tank failures or tank overfills.

Date of Government Version: 08/15/05
Date Data Arrived at EDR: 08/30/05
Date Made Active in Reports: 09/13/05

Number of Days to Update: 14

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: Varies

UST: Petroleum Bulk Storage (PBS) Database

Facilities that have petroleum storage capacities in excess of 1,100 gallons and less than 400,000 gallons.

Date of Government Version: 01/01/02 Date Data Arrived at EDR: 02/20/02 Date Made Active in Reports: 03/22/02

Number of Days to Update: 30

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: No Update Planned

CBS UST: Chemical Bulk Storage Database

Facilities that store regulated hazardous substances in underground tanks of any size

Date of Government Version: 01/01/02 Date Data Arrived at EDR: 02/20/02 Date Made Active in Reports: 03/22/02

Number of Days to Update: 30

Source: NYSDEC Telephone: 518-402-9549 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05
Data Release Frequency: No Update Planned

MOSF UST: Major Oil Storage Facilities Database

Facilities that may be onshore facilities or vessels, with petroleum storage capacities of 400,000 gallons or greater.

Date of Government Version: 01/01/02 Date Data Arrived at EDR: 02/20/02 Date Made Active in Reports: 03/22/02

Number of Days to Update: 30

Source: NYSDEC Telephone: 518-402-9549 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: Varies

VCP: Voluntary Cleanup Agreements

New York established its Voluntary Cleanup Program (VCP) to address the environmental, legal and financial barriers that often hinder the redevelopment and reuse of contaminated properties. The Voluntary Cleanup Program was developed to enhance private sector cleanup of brownfields by enabling parties to remediate sites using private rather than public funds and to reduce the development pressures on "greenfield" sites.

Date of Government Version: 06/20/05 Date Data Arrived at EDR: 08/04/05 Date Made Active in Reports: 08/11/05

Number of Days to Update: 7

Source: Department of Environmental Conservation

Telephone: 518-402-9711 Last EDR Contact: 09/14/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Semi-Annually

SWRCY: Registered Recycling Facility List A listing of recycling facilities.

Date of Government Version: 08/15/05 Date Data Arrived at EDR: 08/16/05 Date Made Active in Reports: 09/01/05

Number of Days to Update: 16

Source: Department of Environmental Conservation

Telephone: 518-402-8705 Last EDR Contact: 08/15/05

Next Scheduled EDR Contact: 11/14/05 Data Release Frequency: Semi-Annually

SWTIRE: Registered Waste Tire Storage & Facility List

Date of Government Version: 04/01/04 Date Data Arrived at EDR: 05/19/04 Date Made Active in Reports: 06/25/04

Number of Days to Update: 37

Source: Department of Environmental Conservation

Telephone: 518-402-8694 Last EDR Contact: 08/18/05

Next Scheduled EDR Contact: 11/14/05 Data Release Frequency: Annually

STATE OF NEW YORK ASTM SUPPLEMENTAL RECORDS

HSWDS: Hazardous Substance Waste Disposal Site Inventory

The list includes any known or suspected hazardous substance waste disposal sites. Also included are sites delisted from the Registry of Inactive Hazardous Waste Disposal Sites and non-Registry sites that U.S. EPA Preliminary Assessment (PA) reports or Site Investigation (SI) reports were prepared. Hazardous Substance Waste Disposal Sites are eligible to be Superfund sites now that the New York State Superfund has been refinanced and changed. This means that the study inventory has served its purpose and will no longer be maintained as a separate entity. The last version of the study inventory is frozen in time. The sites on the study will not automatically be made Superfund sites, rather each site will be further evaluated for listing on the Registry. So overtime they will be added to the registry or not.

Date of Government Version: 09/01/02 Date Data Arrived at EDR: 10/15/02 Date Made Active in Reports: 10/30/02

Number of Days to Update: 15

Source: Department of Environmental Conservation

Telephone: 518-402-9564 Last EDR Contact: 08/29/05

Next Scheduled EDR Contact: 11/28/05
Data Release Frequency: No Update Planned

AST: Petroleum Bulk Storage

Registered Aboveground Storage Tanks.

Date of Government Version: 01/01/02 Date Data Arrived at EDR: 02/20/02 Date Made Active in Reports: 03/22/02

Number of Days to Update: 30

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: No Update Planned

CBS AST: Chemical Bulk Storage Database

Facilities that store regulated hazardous substances in aboveground tanks with capacities of 185 gallons or greater, and/or in underground tanks of any size.

Date of Government Version: 01/01/02 Date Data Arrived at EDR: 02/20/02 Date Made Active in Reports: 03/22/02

Number of Days to Update: 30

Source: NYSDEC Telephone: 518-402-9549 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: No Update Planned

MOSF AST: Major Oil Storage Facilities Database

Facilities that may be onshore facilities or vessels, with petroleum storage capacities of 400,000 gallons or greater.

Date of Government Version: 01/01/02 Date Data Arrived at EDR: 02/20/02 Date Made Active in Reports: 03/22/02

Number of Days to Update: 30

Source: NYSDEC Telephone: 518-402-9549 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: No Update Planned

SPILLS: Spills Information Database

Data collected on spills reported to NYSDEC as required by one or more of the following: Article 12 of the Navigation Law, 6 NYCRR Section 613.8 (from PBS regs), or 6 NYCRR Section 595.2 (from CBS regs). It includes spills active as of April 1, 1986, as well as spills occurring since this date.

Date of Government Version: 08/15/05 Date Data Arrived at EDR: 08/30/05 Date Made Active in Reports: 09/13/05

Number of Days to Update: 14

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 07/25/05

Next Scheduled EDR Contact: 10/24/05 Data Release Frequency: Varies

HIST SPILLS: SPILLS Database

This database contains records of chemical and petroleum spill incidents. Under State law, petroleum and hazardous chemical spills that can impact the waters of the state must be reported by the spiller (and, in some cases, by anyone who has knowledge of the spills). In 2002, the Department of Environmental Conservation stopped providing updates to its original Spills Information Database. This database includes fields that are no longer available from the NYDEC as of January 1, 2002. Current information may be found in the NY SPILLS database. Department of Environmental Conservation.

Date of Government Version: 01/01/02 Date Data Arrived at EDR: 07/08/05 Date Made Active in Reports: 07/14/05

Number of Days to Update: 6

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 07/07/05 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

DEL SHWS: Delisted Registry Sites

A database listing of sites delisted from the Registry of Inactive Hazardous Waste Disposal Sites.

Date of Government Version: 05/16/05 Date Data Arrived at EDR: 05/19/05 Date Made Active in Reports: 06/16/05

Number of Days to Update: 28

Source: Department of Environmental Conservation

Telephone: 518-402-9622 Last EDR Contact: 09/14/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Annually

HIST LTANKS: Listing of Leaking Storage Tanks

A listing of leaking underground and aboveground storage tanks. The causes of the incidents are tank test failures, tank failures or tank overfills. In 2002, the Department of Environmental Conservation stopped providing updates to its original Spills Information Database. This database includes fields that are no longer available from the NYDEC as of January 1, 2002. Current information may be found in the NY LTANKS database. Department of Environmental Conservation.

Date of Government Version: 01/01/02 Date Data Arrived at EDR: 07/08/05 Date Made Active in Reports: 07/14/05

Number of Days to Update: 6

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 07/07/05 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

DRYCLEANERS: Registered Drycleaners

A listing of all registered drycleaning facilities.

Date of Government Version: 06/15/04 Date Data Arrived at EDR: 06/15/04 Date Made Active in Reports: 07/29/04 Number of Days to Update: 44

Source: Department of Environmental Conservation

Telephone: 518-402-8403 Last EDR Contact: 05/21/04 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

ENG CONTROLS: Registry of Engineering Controls

Environmental Remediation sites that have engineering controls in place.

Date of Government Version: 06/20/05 Date Data Arrived at EDR: 06/23/05 Date Made Active in Reports: 07/27/05

Number of Days to Update: 34

Source: Department of Environmental Conservation

Telephone: 518-402-9553 Last EDR Contact: 09/14/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Quarterly

AIRS: Air Emissions Data

Date of Government Version: 12/31/02 Date Data Arrived at EDR: 09/13/04 Date Made Active in Reports: 10/18/04

Number of Days to Update: 35

Source: Department of Environmental Conservation

Telephone: 518-402-8452 Last EDR Contact: 08/22/05

Next Scheduled EDR Contact: 11/21/05 Data Release Frequency: Annually

SPDES: State Pollutant Discharge Elimination System

New York State has a state program which has been approved by the United States Environmental Protection Agency for the control of wastewater and stormwater discharges in accordance with the Clean Water Act. Under New York State law the program is known as the State Pollutant Discharge Elimination System (SPDES) and is broader in scope than that required by the Clean Water Act in that it controls point source discharges to groundwaters as well as surface waters.

Date of Government Version: 05/31/05 Date Data Arrived at EDR: 06/08/05 Date Made Active in Reports: 07/14/05

Number of Days to Update: 36

Source: Department of Environmental Conservation

Telephone: 518-402-8233 Last EDR Contact: 08/08/05

Next Scheduled EDR Contact: 11/07/05 Data Release Frequency: No Update Planned

LOCAL RECORDS

CORTLAND COUNTY:

Cortland County Storage Tank Listing

Date of Government Version: 06/30/05 Date Data Arrived at EDR: 07/05/05 Date Made Active in Reports: 07/29/05

Number of Days to Update: 24

Source: Cortland County Health Department

Telephone: 607-753-5035 Last EDR Contact: 08/29/05

Next Scheduled EDR Contact: 11/28/05 Data Release Frequency: Quarterly

Cortland County Storage Tank Listing

Date of Government Version: 06/30/05 Date Data Arrived at EDR: 07/05/05 Date Made Active in Reports: 07/29/05

Number of Days to Update: 24

Source: Cortland County Health Department

Telephone: 607-753-5035 Last EDR Contact: 08/29/05

Next Scheduled EDR Contact: 11/28/05 Data Release Frequency: Quarterly

NASSAU COUNTY:

Registered Tank Database

Date of Government Version: 05/21/03 Date Data Arrived at EDR: 05/27/03 Date Made Active in Reports: 06/09/03

Number of Days to Update: 13

Source: Nassau County Health Department

Telephone: 516-571-3314 Last EDR Contact: 08/01/05

Next Scheduled EDR Contact: 10/31/05 Data Release Frequency: No Update Planned

Registered Tank Database

Date of Government Version: 05/21/03 Date Data Arrived at EDR: 05/27/03 Date Made Active in Reports: 06/09/03

Number of Days to Update: 13

Source: Nassau County Health Department

Telephone: 516-571-3314 Last EDR Contact: 08/01/05

Next Scheduled EDR Contact: 10/31/05 Data Release Frequency: No Update Planned

Storage Tank Database

Date of Government Version: 05/25/04 Date Data Arrived at EDR: 06/08/04 Date Made Active in Reports: 07/29/04

Number of Days to Update: 51

Source: Nassau County Office of the Fire Marshal

Telephone: 516-572-1000 Last EDR Contact: 08/08/05

Next Scheduled EDR Contact: 11/07/05 Data Release Frequency: Varies

Storage Tank Database

Date of Government Version: 05/25/04 Date Data Arrived at EDR: 06/08/04 Date Made Active in Reports: 07/29/04 Number of Days to Update: 51

Source: Nassau County Office of the Fire Marshal

Telephone: 516-572-1000 Last EDR Contact: 08/08/05

Next Scheduled EDR Contact: 11/07/05 Data Release Frequency: Varies

ROCKLAND COUNTY:

Petroleum Bulk Storage Database

Date of Government Version: 07/27/05 Date Data Arrived at EDR: 08/01/05 Date Made Active in Reports: 08/30/05 Number of Days to Update: 29

Source: Rockland County Health Department

Telephone: 914-364-2605 Last EDR Contact: 07/05/05

Next Scheduled EDR Contact: 10/03/05 Data Release Frequency: Quarterly

Petroleum Bulk Storage Database

Date of Government Version: 07/27/05 Date Data Arrived at EDR: 08/01/05 Date Made Active in Reports: 08/31/05

Number of Days to Update: 30

Source: Rockland County Health Department

Telephone: 914-364-2605 Last EDR Contact: 07/05/05

Next Scheduled EDR Contact: 10/03/05 Data Release Frequency: Quarterly

SUFFOLK COUNTY:

Storage Tank Database

Date of Government Version: 04/16/04 Date Data Arrived at EDR: 05/11/04 Date Made Active in Reports: 06/04/04

Number of Days to Update: 24

Source: Suffolk County Department of Health Services

Telephone: 631-854-2521 Last EDR Contact: 09/01/05

Next Scheduled EDR Contact: 11/28/05 Data Release Frequency: Annually

Storage Tank Database

Date of Government Version: 04/16/04 Date Data Arrived at EDR: 05/11/04 Date Made Active in Reports: 06/04/04

Number of Days to Update: 24

Source: Suffolk County Department of Health Services

Telephone: 631-854-2521 Last EDR Contact: 09/01/05

Next Scheduled EDR Contact: 11/28/05 Data Release Frequency: Annually

WESTCHESTER COUNTY:

Listing of Storage Tanks

Listing of underground storage tanks in Westchester County.

Date of Government Version: 05/05/05 Date Data Arrived at EDR: 05/31/05 Date Made Active in Reports: 06/30/05

Number of Days to Update: 30

Source: Westchester County Department of Health

Telephone: 914-813-5161 Last EDR Contact: 08/29/05

Next Scheduled EDR Contact: 11/28/05 Data Release Frequency: Varies

Listing of Storage Tanks

Listing of aboveground storage tanks in Westchester County.

Date of Government Version: 05/05/05 Date Data Arrived at EDR: 05/31/05 Date Made Active in Reports: 06/30/05

Number of Days to Update: 30

Source: Westchester County Department of Health

Telephone: 914-813-5161 Last EDR Contact: 08/29/05

Next Scheduled EDR Contact: 11/28/05 Data Release Frequency: Varies

EDR PROPRIETARY HISTORICAL DATABASES

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. ©Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report, Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

BROWNFIELDS DATABASES

Brownfields: Brownfields Site List

A Brownfield is any real property where redevelopment or re-use may be complicated by the presence or potential presence of a hazardous waste, petroleum, pollutant, or contaminant.

Date of Government Version: 06/20/05 Date Data Arrived at EDR: 06/23/05 Date Made Active in Reports: 07/27/05

Number of Days to Update: 34

Source: Department of Environmental Conservation

Telephone: 518-402-9764 Last EDR Contact: 09/14/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Semi-Annually

VCP: Voluntary Cleanup Agreements

The voluntary remedial program uses private monies to get contaminated sites r emediated to levels allowing for the sites' productive use. The program covers virtually any kind of site and contamination.

Date of Government Version: 06/20/05 Date Data Arrived at EDR: 08/04/05 Date Made Active in Reports: 08/11/05

Number of Days to Update: 7

Source: Department of Environmental Conservation

Telephone: 518-402-9711 Last EDR Contact: 09/14/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Semi-Annually

US BROWNFIELDS: A Listing of Brownfields Sites

Included in the listing are brownfields properties addresses by Cooperative Agreement Recipients and brownfields properties addressed by Targeted Brownfields Assessments. Targeted Brownfields Assessments-EPA's Targeted Brownfields Assessments (TBA) program is designed to help states, tribes, and municipalities--especially those without EPA Brownfields Assessment Demonstration Pilots--minimize the uncertainties of contamination often associated with brownfields. Under the TBA program, EPA provides funding and/or technical assistance for environmental assessments at brownfields sites throughout the country. Targeted Brownfields Assessments supplement and work with other efforts under EPA's Brownfields Initiative to promote cleanup and redevelopment of brownfields. Cooperative Agreement Recipients-States, political subdivisions, territories, and Indian tribes become Brownfields Cleanup Revolving Loan Fund (BCRLF) cooperative agreement recipients when they enter into BCRLF cooperative agreements with the U.S. EPA selects BCRLF cooperative agreement recipients based on a proposal and application process. BCRLF cooperative agreement recipients must use EPA funds provided through BCRLF cooperative agreement for specified brownfields-related cleanup activities.

Date of Government Version: 01/10/05 Date Data Arrived at EDR: 01/19/05 Date Made Active in Reports: 04/01/05

Number of Days to Update: 72

Source: Environmental Protection Agency

Telephone: 202-566-2777 Last EDR Contact: 08/11/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Semi-Annually

US INST CONTROL: Sites with Institutional Controls

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 01/10/05 Date Data Arrived at EDR: 02/11/05 Date Made Active in Reports: 04/06/05

Number of Days to Update: 54

Source: Environmental Protection Agency

Telephone: 703-603-8867 Last EDR Contact: 07/05/05

Next Scheduled EDR Contact: 10/03/05 Data Release Frequency: Varies

INST CONTROL: Registry of Institutional Controls

Environmental Remediation sites that have institutional controls in place.

Date of Government Version: 06/20/05 Date Data Arrived at EDR: 06/23/05 Date Made Active in Reports: 07/27/05

Number of Days to Update: 34

Source: Department of Environmental Conservation

Telephone: 518-402-9553 Last EDR Contact: 09/14/05

Next Scheduled EDR Contact: 12/12/05 Data Release Frequency: Quarterly

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

Oil/Gas Pipelines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines.

Electric Power Transmission Line Data

Source: PennWell Corporation Telephone: (800) 823-6277

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Day Care Providers

Source: Department of Health Telephone: 212-676-2444

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

New York State Wetlands

Source: Department of Environmental Conservation

Telephone: 518-402-8961

Coverages are based on official New York State Freshwater Wetlands Maps as described in

Article 24-0301 of the Environmental Conservation Law.

STREET AND ADDRESS INFORMATION

© 2004 Geographic Data Technology, Inc., Rel. 07/2004. This product contains proprietary and confidential property of Geographic Data Technology, Inc. Unauthorized use, including copying for other than testing and standard backup procedures, of this product is expressly prohibited.

GEOCHECK®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

ISLAND HILLS GOLF CLUB 458 LAKELAND AVE SAYVILLE, NY 11782

TARGET PROPERTY COORDINATES

Latitude (North): 40.757099 - 40° 45' 25.6" Longitude (West): 73.098602 - 73° 5' 55.0"

Universal Tranverse Mercator: Zone 18 UTM X (Meters): 660504.9 UTM Y (Meters): 4513321.0

Elevation: 33 ft. above sea level

EDR's GeoCheck Physical Setting Source Addendum has been developed to assist the environmental professional with the collection of physical setting source information in accordance with ASTM 1527-00, Section 7.2.3. Section 7.2.3 requires that a current USGS 7.5 Minute Topographic Map (or equivalent, such as the USGS Digital Elevation Model) be reviewed. It also requires that one or more additional physical setting sources be sought when (1) conditions have been identified in which hazardous substances or petroleum products are likely to migrate to or from the property, and (2) more information than is provided in the current USGS 7.5 Minute Topographic Map (or equivalent) is generally obtained, pursuant to local good commercial or customary practice, to assess the impact of migration of recognized environmental conditions in connection with the property. Such additional physical setting sources generally include information about the topographic, hydrologic, hydrogeologic, and geologic characteristics of a site, and wells in the area.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

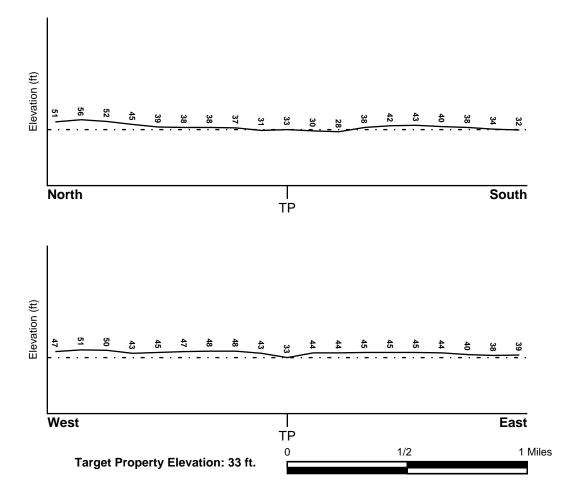
Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata. EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.


TARGET PROPERTY TOPOGRAPHY

USGS Topographic Map: 40073-G1 PATCHOGUE, NY

General Topographic Gradient: General SSE

Source: USGS 7.5 min quad index

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

FEMA Flood

Target Property County

Electronic Data

SUFFOLK, NY

YES - refer to the Overview Map and Detail Map

Flood Plain Panel at Target Property:

36103C0688G

Additional Panels in search area:

36103C0689G 36103C0901G

00103009010

36103C0902G

NATIONAL WETLAND INVENTORY

NWI Electronic

NWI Quad at Target Property

Data Coverage

PATCHOGUE

YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Site-Specific Hydrogeological Data*:

Search Radius: 1.25 miles Status: Not found

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

LOCATION GENERAL DIRECTION

MAP ID FROM TP GROUNDWATER FLOW

Not Reported

^{*©1996} Site—specific hydrogeological data gathered by CERCLIS Alerts, Inc., Bainbridge Island, WA. All rights reserved. All of the information and opinions presented are those of the cited EPA report(s), which were completed under a Comprehensive Environmental Response Compensation and Liability Information System (CERCLIS) investigation.

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Cenozoic Category: Stratifed Sequence

System: Quaternary Series: Pleistocene

Code: Qp (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name: RIVERHEAD

Soil Surface Texture: sandy loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained. Soils have intermediate water holding capacity. Depth to

water table is more than 6 feet.

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: LOW

Depth to Bedrock Min: > 60 inches

Depth to Bedrock Max: > 60 inches

	Soil Layer Information						
	Bou	ındary		Classif	fication		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	12 inches	sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 6.00 Min: 2.00	Max: 6.00 Min: 3.60
2	12 inches	27 inches	sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 6.00 Min: 2.00	Max: 6.00 Min: 3.60
3	27 inches	35 inches	loamy sand	Granular materials (35 pct. or less passing No. 200), Stone Fragments, Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 6.00 Min: 2.00	Max: 6.00 Min: 4.50
4	35 inches	65 inches	stratified	Granular materials (35 pct. or less passing No. 200), Stone Fragments, Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Clean Sands, Poorly graded sand.	Max: 20.00 Min: 20.00	Max: 7.30 Min: 4.50

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures: loam

loamy sand silt loam fine sandy loam

Surficial Soil Types: loam

loamy sand silt loam fine sandy loam

Shallow Soil Types: No Other Soil Types

Deeper Soil Types: gravelly - coarse sand

very gravelly - sand

sandy loam

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

According to ASTM E 1527-00, Section 7.2.2, "one or more additional state or local sources of environmental records may be checked, in the discretion of the environmental professional, to enhance and supplement federal and state sources... Factors to consider in determining which local or additional state records, if any, should be checked include (1) whether they are reasonably ascertainable, (2) whether they are sufficiently useful, accurate, and complete in light of the objective of the records review (see 7.1.1), and (3) whether they are obtained, pursuant to local, good commercial or customary practice." One of the record sources listed in Section 7.2.2 is water well information. Water well information can be used to assist the environmental professional in assessing sources that may impact groundwater flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

LOCATION

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
1	USGS2116020	1/2 - 1 Mile West
A2	USGS2116416	1/2 - 1 Mile SW
3	USGS2116218	1/2 - 1 Mile SE
A4	USGS2116391	1/2 - 1 Mile SW
B5	USGS2115739	1/2 - 1 Mile NNE
B6	USGS2115740	1/2 - 1 Mile NNE
7	USGS2116458	1/2 - 1 Mile SSE
12	USGS2116293	1/2 - 1 Mile ESE
13	USGS2115760	1/2 - 1 Mile NE
14	USGS2115695	1/2 - 1 Mile ENE
D15	USGS2115619	1/2 - 1 Mile North
D16	USGS2115621	1/2 - 1 Mile North
D17	USGS2115620	1/2 - 1 Mile North
E18	USGS2115609	1/2 - 1 Mile NNE
E19	USGS2115610	1/2 - 1 Mile NNE
F20	USGS2116018	1/2 - 1 Mile East
F21	USGS2116019	1/2 - 1 Mile East
F22	USGS2116031	1/2 - 1 Mile East

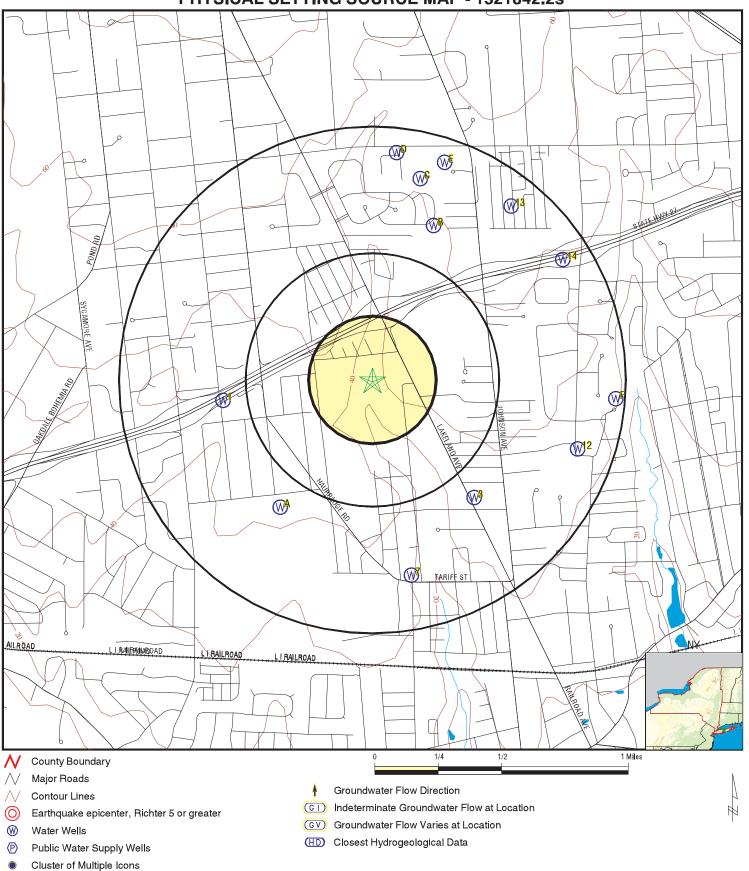
FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID WELL ID FROM TP

No PWS System Found

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION


MAP ID WELL ID LOCATION FROM TP

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
C8	NYWS006163	1/2 - 1 Mile NNE
C9	NYWS006164	1/2 - 1 Mile NNE
C10	NYWS006161	1/2 - 1 Mile NNE
C11	NYWS006162	1/2 - 1 Mile NNE

PHYSICAL SETTING SOURCE MAP - 1521842.2s

TARGET PROPERTY: Island Hills Golf Club ADDRESS: 458 Lakeland Ave CITY/STATE/ZIP: Sayville NY 11782 LAT/LONG: 40.7571 / 73.0986 CUSTOMER: P.W. Grosser Consulting CONTACT: Bryan A Devaux

INQUIRY #: 1521842.2s DATE: September 30,

September 30, 2005 8:50 am

Map ID Direction Distance

Elevation Database EDR ID Number

1 West FED USGS USGS2116020 1/2 - 1 Mile

Higher

Agency cd: USGS Site no: 404521073063701

 Site name:
 \$ 26059. 1

 Latitude:
 404521

 Longitude:
 0730637

40.75593157 Dec lat: -73.10983411 Coor meth: Dec Ion: Μ Coor accr: S Latlong datum: NAD27 NAD83 Dec latlong datum: District: 36 36 County: 103 State:

Country: US Land net: Not Reported Location map: SO1393 8207 Map scale: Not Reported

Altitude: 43.0 Altitude method: L
Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER,UPPER

Well depth: 75. Hole depth: Not Reported Source of depth data: Not Reported Project number: Not Reported Daily flow data begin date: Real time data flag: Not Reported Not Reported Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data begin date: Not Reported Ground water data end date: Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

A2 SW FED USGS USGS2116416

1/2 - 1 Mile Higher

Agency cd: USGS Site no: 404500073062101

Site name: S 56030. 1 Latitude: 404500

Dec lat: 40.75009823 Longitude: 0730621 Dec Ion: -73.10538963 Coor meth: Μ Coor accr: S Latlong datum: NAD27 NAD83 Dec latlong datum: District: 36 State: 36 County: 103

Country: US Land net: Not Reported Not Reported Location map: S10-13 Map scale: Altitude: Not Reported Altitude method: Not Reported Altitude accuracy: Not Reported Altitude datum: Not Reported

Hydrologic: Not Reported

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER,UPPER

Well depth:36.Hole depth:Not ReportedSource of depth data:Not ReportedProject number:Not ReportedReal time data flag:0Daily flow data begin date:0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00

Peak flow data end date: 0000-00-00

Peak flow data count: 0

Water quality data begin date: 1975-11-05

Water quality data end date:1985-04-03 Water quality data count: 3

Ground water data begin date: 1994-05-03 Ground water data end date: 2004-03-15

Ground water data count: 11

Ground-water levels, Number of Measurements: 11

USGS

Date	Feet below Surface	Feet to Sealevel	Date	Feet below Surface	Feet to Sealevel
2004-03-15		19.09	2003-03-17		19.46
2002-03-27 2000-03-22		16.64 17.85	2001-03-21 1999-03-23		18.72 19.25
1998-03-18 1996-03-18		20.52 18.55	1997-03-17 1995-03-16		19.75 17.61
1994-05-03		19.94			

3 SE FED USGS USGS2116218 1/2 - 1 Mile

Site no:

1/2 - 1 Mile Higher	
Agency cd:	

g ,			
Site name:	S 80.1		
Latitude:	404501		
Longitude:	0730529	Dec lat:	40.75037601
Dec Ion:	-73.09094468	Coor meth:	M
Coor accr:	S	Latlong datum:	NAD27
Dec latlong datum:	NAD83	District:	36
State:	36	County:	103
Country:	US	Land net:	Not Reported
Location map:	SO1458 8	Map scale:	Not Reported
Altitude:	35.0	Altitude method:	L
Altitude accuracy:	0.1	Altitude datum:	NGVD29
Hydrologic:	Southern Long Island. New York.	Area = 1660 sq.mi.	
Topographic:	Not Reported		
Site type:	Ground-water other than Spring	Date construction:	Not Reported
Date inventoried:	Not Reported	Mean greenwich time offset:	EST
Local standard time flag:	N		
Type of ground water site:	Single well, other than collector o	r Ranney type	
Aquifer Type:	Not Reported		
Aquifer:	Not Reported		
Well depth:	121.	Hole depth:	Not Reported
Source of depth data:	Not Reported	Project number:	Not Reported
Real time data flag:	Not Reported	Daily flow data begin date:	Not Reported
Daily flow data end date:	Not Reported	Daily flow data count:	Not Reported
Peak flow data begin date:	Not Reported	Peak flow data end date:	Not Reported
Peak flow data count:	Not Reported	Water quality data begin date:	Not Reported
Water quality data end date	:Not Reported	Water quality data count:	Not Reported
Ground water data begin da	ate: Not Reported	Ground water data end date:	Not Reported
Ground water data count:	Not Reported		

Ground-water levels, Number of Measurements: 0

404501073052901

Map ID Direction Distance

Elevation Database EDR ID Number

A4 SW 1/2 - 1 Mile

FED USGS USGS2116391

Higher

Agency cd: USGS Site no: 404458073062201

 Site name:
 S 56029. 1

 Latitude:
 404458

 Longitude:
 0730622

Dec lat: 40.74954268 Dec Ion: -73.10566742 Coor meth: Μ Coor accr: S Latlong datum: NAD27 NAD83 Dec latlong datum: 36 District: 36 County: 103 State:

Country: US Land net: Not Reported Location map: S10-13 Map scale: Not Reported Not Reported Not Reported Altitude: Altitude method: Not Reported Altitude datum: Altitude accuracy: Not Reported

Hydrologic: Not Reported Topographic: Not Reported

Cround water other than Spring

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER,UPPER

Well depth: 42. Hole depth: Not Reported Source of depth data: Not Reported Project number: Not Reported Real time data flag: 0 Daily flow data begin date: 0000-00-00

Real time data flag: U Daily flow da

Daily flow data end date: 0000-00-00 Daily flow data count: 0
Peak flow data begin date: 0000-00-00 Peak flow data count: 0
Peak flow data count: 0
Water quality data begin date: 1975-11-05

Water quality data end date:1985-04-03 Water quality data count: 3

Ground water data begin date: 0000-00-00 Ground water data end date: 0000-00-00

Ground water data count: 0

Higher

Ground-water levels, Number of Measurements: 0

B5
NNE FED USGS USGS2115739
1/2 - 1 Mile

Agency cd: USGS Site no: 404557073054001

 Site name:
 S 74484. 1

 Latitude:
 404557

 Longitude:
 0730540

Dec lat: 40.76593158 Dec Ion: -73.09400003 Coor meth: Μ Coor accr: S Latlong datum: NAD27 NAD83 Dec latlong datum: District: 36 State: 36 County: 103

Country: US Land net: Not Reported SO1460 Not Reported Location map: Map scale: Altitude: Not Reported Altitude method: Not Reported Altitude accuracy: Not Reported Altitude datum: Not Reported

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aguifer Type: Not Reported

Aquifer: GLACIAL AQUIFER,UPPER

Well depth:20.Hole depth:Not ReportedSource of depth data:Not ReportedProject number:Not ReportedReal time data flag:0Daily flow data begin date:0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Water quality data begin date: 1984-10-24

Water quality data end date:1985-02-07 Water quality data count: 6

Ground water data begin date: 0000-00-00 Ground water data end date: 0000-00-00

Ground water data count: 0

Ground-water levels, Number of Measurements: 0

B6
NNE
FED USGS USGS2115740
1/2 - 1 Mile
Higher

Agency cd: USGS Site no: 404557073054002

Site name: S 74485. 1 Latitude: 404557

Longitude: 0730540 Dec lat: 40.76593158

 Dec Ion:
 -73.09400003
 Coor meth:
 M

 Coor accr:
 S
 Latlong datum:
 NAD27

 Dec latlong datum:
 NAD83
 District:
 36

 State:
 36
 County:
 103

Country: US Land net: Not Reported SO1460 8 Not Reported Location map: Map scale: Altitude: Not Reported Altitude method: Not Reported Altitude accuracy: Not Reported Not Reported Altitude datum:

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Lower

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER,UPPER

Well depth: Not Reported 30. Hole depth: Source of depth data: Not Reported Not Reported Project number: Real time data flag: Not Reported Daily flow data begin date: Not Reported Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Not Reported Water quality data begin date: Not Reported Peak flow data count: Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data begin date: Not Reported Ground water data end date: Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

7 SSE FED USGS USGS2116458 1/2 - 1 Mile

TC1521842.2s Page A-12

USGS 404445073054600 Agency cd: Site no:

Site name: S 30827. 1 Latitude: 404445

0730546 40.74593162 Longitude: Dec lat: Dec Ion: -73.0956671 Coor meth: М

NAD27 Coor accr: S Latlong datum: Dec latlong datum: NAD83 District: 36 36 County: 103

US Land net: Not Reported Country: SP1420 Location map: Not Reported Map scale:

Altitude: 35.0 Altitude method:

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported Ground-water other than Spring Date construction: Not Reported Site type:

Date inventoried: Not Reported Mean greenwich time offset: **EST**

Local standard time flag:

Single well, other than collector or Ranney type Type of ground water site:

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER, UPPER

Well depth: Hole depth: Not Reported Source of depth data: Not Reported Project number: Not Reported

Real time data flag: 0 Daily flow data begin date: 0000-00-00

0000-00-00 Daily flow data end date: Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Peak flow data count: Water quality data begin date: 1972-11-15

Water quality data end date:1972-11-15 Water quality data count:

Ground water data begin date: 0000-00-00 Ground water data end date: 0000-00-00

Ground water data count: 0

Ground-water levels, Number of Measurements: 0

NNE NY WELLS NYWS006163

1/2 - 1 Mile Higher

> SUFFOLK COUNTY WATER AUTHORITY Well Id: NY5110526 System name: CHURCH STREET BOH. WELL # 1 S-52126 System Id: 218 Well name:

Type: WL

Active?: County: SUFFOLK COUNTY Latitude: 404607 000 Longitude: 730542 000 AC Slec_type_:

RANDAZZO, KAREN Agency: Address: PO BOX 18043

City/State/Zip: HAUPPAUGUE NY 11788

Phone: 631-563-0258

1/2 - 1 Mile Higher

TC1521842.2s Page A-13

NY WELLS

NYWS006164

Well Id: NY5110526 System Id: 219

Type: WL

SUFFOLK COUNTY County: Longitude: 730542 000 Agency: RANDAZZO, KAREN Address: PO BOX 18043

City/State/Zip: HAUPPAUGUE NY 11788

631-563-0258 Phone:

SUFFOLK COUNTY WATER AUTHORITY System name: Well name: CHURCH STREET BOH. WELL # 2 S-57871

Active?:

404607 000 Latitude: Slec_type_: AC

NYWS006161 NNE **NY WELLS**

1/2 - 1 Mile Higher

> SUFFOLK COUNTY WATER AUTHORITY Well Id: NY5110526 System name: System Id: Well name: CHURCH STREET BOH. WELL # 1 S-52126 218 Active?:

Type: WL

SUFFOLK COUNTY County: Latitude: 404607 000 Longitude: 730542 000 AC Slec_type_:

Agency: MURRAY, ROBERT L. Address: 180 Fifth Avenue City/State/Zip: **BAYSHORE NY 11706**

Phone: 631-665-0662

C11 NNE **NY WELLS** NYWS006162

1/2 - 1 Mile Higher

Higher

SUFFOLK COUNTY WATER AUTHORITY NY5110526 System name: Well Id: System Id: Well name: CHURCH STREET BOH. WELL # 2 S-57871 219

WL Active?:

Type: Α SUFFOLK COUNTY 404607 000 County: Latitude: Slec_type_: AC

Longitude: 730542 000 MURRAY, ROBERT L. Agency: Address: 180 Fifth Avenue City/State/Zip: **BAYSHORE NY 11706**

Phone: 631-665-0662

ESE **FED USGS** USGS2116293 1/2 - 1 Mile

USGS Agency cd: Site no: 404511073050100

Site name: S 34904.1 Latitude: 404511

0730501 Longitude: Dec lat: 40.75315379

Dec Ion: -73.08316658 Coor meth: Μ Latlong datum: S NAD27 Coor accr: Dec latlong datum: NAD83 District: 36 State: 36 County: 103

Country: US Land net: Not Reported Location map: SO1488 Map scale: Not Reported

Altitude: 35.0 Altitude method: L

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER, UPPER

Well depth: 63 Hole depth: Not Reported Source of depth data: Not Reported Project number: Not Reported Real time data flag: Daily flow data begin date: 0000-00-00 Daily flow data end date: 0000-00-00 Daily flow data count: 0 Peak flow data begin date: 0000-00-00 0000-00-00 Peak flow data end date: Peak flow data count: Water quality data begin date: 1972-11-13

Water quality data end date:1972-11-13 Water quality data count: 1

Ground water data begin date: 0000-00-00 Ground water data end date: 0000-00-00

Ground water data count: 0

Ground-water levels, Number of Measurements: 0

13 NE FED USGS USGS2115760

1/2 - 1 Mile Higher

Agency cd: USGS Site no: 404601073051901

 Site name:
 S 49749. 1

 Latitude:
 404601

0730519 40.7670427 Longitude: Dec lat: Dec Ion: -73.08816647 Coor meth: Μ NAD27 S Latlong datum: Coor accr: NAD83 Dec latlong datum: District: 36 State: 36 County: 103

Country: US Land net: Not Reported SO1481 Not Reported Location map: Map scale: Altitude: Not Reported Altitude method: Not Reported Altitude accuracy: Not Reported Altitude datum: Not Reported

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER, UPPER

Well depth: 46. Hole depth: Not Reported Source of depth data: Not Reported Project number: Not Reported

Real time data flag: 0 Daily flow data begin date: 0000-00-00 Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data count: 0 Water quality data begin date: 1973-09-12

Water quality data end date:1985-04-10 Water quality data count: 4

Ground water data begin date: 1973-10-03 Ground water data end date: 1983-04-06

Ground water data count: 12

Date	Feet below Surface	Feet to Sealevel	Date	Feet below Surface	Feet to Sealevel
1983-04-	 -06	27.46	1980-04-03		29.59
1979-09-	-17	31.19	1979-06-11		32.13
1979-03-	-27	33.04	1979-01-12		29.87
1978-03-	-20	30.99	1976-03-31		29.99
1975-12-	-17	28.72	1975-10-07		29.18
1975-02-	-21	28.95	1973-10-03		29.74

14
ENE FED USGS USGS2115695
1/2 - 1 Mile
Higher

Site no:

 Agency cd:
 USGS

 Site name:
 \$ 3739. 1

 Latitude:
 404550

 Longitude:
 0730505

Dec lat: 40.76398714 Dec Ion: -73.0842775 Coor meth: Μ Coor accr: S Latlong datum: NAD27 Dec latlong datum: NAD83 District: 36 State: 36 County: 103

Country: US Land net: Not Reported Location map: SO1492 Map scale: Not Reported Altitude: 30.0 Altitude method: L

Altitude: 30.0 Altitude method: L
Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported Aquifer: Not Reported

Well depth: 30. Hole depth: Not Reported Source of depth data: Not Reported Project number: Not Reported Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00
Peak flow data count: 0

Peak flow data count: 0

Water quality data begin date: 0000-00-00

Water quality data count: 0

Water quality data count: 0

Ground water data begin date: 1943-07-20 Ground water data end date: 1952-12-29

Ground water data count: 115

Ground-water levels, Number of Measurements: 115

Date	Feet below Surface	Feet to Sealevel	Date	Feet below Surface	Feet to Sealevel
1952-12-29		27.83	1952-12-03		28.08
1952-11-04		28.46	1952-09-23		29.14
1952-08-26		29.59	1952-07-22		30.15
1952-06-23		30.61	1952-05-26		30.43
1952-04-22		30.18	1952-03-25		29.87
1952-02-26		29.51	1952-01-24		28.57
1951-12-19		27.44	1951-11-27		27.42
1951-10-31		27.31	1951-10-09		27.50
1951-09-25		27.00	1951-08-28		27.44

404550073050501

Ground-wate	er levels, conti Feet below	nued. Feet to		Feet below	Feet to
Date	Surface	Sealevel	Date	Surface	Sealevel
1951-07-26		27.99	1951-06-20		28.13
1951-06-01		28.18	1951-04-24		28.10
1951-03-27		27.50	1951-02-21		26.45
1951-01-25		26.40	1950-12-29		26.28
1950-11-27		26.49	1950-10-24		26.71
1950-09-27		26.63	1950-08-31		27.00
1950-07-24		27.31	1950-06-28		28.08
1950-04-26		27.44	1950-03-29		27.29
1950-03-01		26.97	1950-02-02		26.36
1949-12-30		26.65	1949-12-04		26.95
1949-10-25		27.44	1949-10-06		27.74
1949-08-25		28.26	1949-07-27		28.77
1949-07-07		29.13	1949-05-26		29.75
1949-04-27		29.97	1949-03-28		30.04
1949-02-23		29.60	1949-01-25		29.27
1948-12-27		27.62	1948-12-01		27.95
1948-10-26		28.40	1948-10-01		28.82
1948-08-27		29.49	1948-08-03		29.86
1948-06-30		29.89	1948-06-01		29.52
1948-05-04		29.39	1948-04-01		29.06
1948-02-27		27.78	1948-02-05		27.13
1947-12-23		26.97	1947-11-25		26.70
1947-12-23		26.41	1947-11-23		26.69
1947-10-30		27.03	1947-10-03		
1947-09-04		27.55	1947-06-06		27.35 27.75
1947-07-10		27.66	1947-04-04		26.59
1947-03-04		26.52 26.88	1947-02-10		26.56 27.28
1947-01-02			1946-12-02		
1946-11-01		27.75	1946-09-27		28.24
1946-09-04		28.53	1946-07-31		28.43
1946-07-05		28.82	1946-06-13		28.77
1946-05-08		27.80	1946-04-09		27.80
1946-03-06		27.71	1946-02-14		27.53
1946-01-03		26.64	1945-11-30		26.42
1945-10-30		26.72	1945-10-05		27.05
1945-09-06		27.50	1945-08-01		27.96
1945-06-27		28.37	1945-05-30		28.29
1945-05-03		27.96	1945-03-27		28.06
1945-02-28		27.80	1945-01-31		27.78
1944-12-28		27.59	1944-11-30		26.61
1944-11-01		26.66	1944-09-29		27.10
1944-08-30		27.41	1944-07-28		27.99
1944-06-29		28.49	1944-06-01		28.89
1944-04-29		28.41	1944-03-31		27.80
1944-03-01		27.25	1944-01-31		27.35
1943-12-30		26.48	1943-11-29		26.75
1943-10-28		26.49	1943-09-24		27.47
1943-09-02		27.70	1943-08-02		28.26
1943-07-20		28.42			

D15 North 1/2 - 1 Mile Higher

FED USGS USGS2115619

Agency cd: USGS Site no: 404612073055001

Site name: S 52126. 1 Latitude: 404612

Longitude: 0730550 Dec lat: 40.77009825

 Dec Ion:
 -73.09677782
 Coor meth:
 M

 Coor accr:
 S
 Latlong datum:
 NAD27

 Dec latlong datum:
 NAD83
 District:
 36

 State:
 36
 County:
 103

Country: US Land net: Not Reported Location map: SN1458 Map scale: Not Reported

Altitude: 52.2 Altitude method: L

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER, UPPER

Well depth: 156. Hole depth: Not Reported Source of depth data: Not Reported Project number: Not Reported

Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00

Daily flow data count: 0

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data count: 0000-00-00 Water quality data begin date: 1975-08-11

Water quality data end date:2003-01-06 Water quality data count: 17
Ground water data begin date: 1985-04-05 Ground water data end date: 1985-04-05

Ground water data begin date: 1985-04-05 Ground water data count: 2

Ground-water levels, Number of Measurements: 2

D16
North
FED USGS USGS2115621

1/2 - 1 Mile Higher

Agency cd: USGS Site no: 404612073055003

Site name: S 68552. 1 Latitude: 404612

 Longitude:
 0730550
 Dec lat:
 40.77009825

 Dec lon:
 -73.09677782
 Coor meth:
 M

 Coor accr:
 S
 Latlong datum:
 NAD27

 Dec latlong datum:
 NAD83
 District:
 36

State:36County:103Country:USLand net:Not ReportedLocation map:SN1458Map scale:Not Reported

Altitude: 57.0 Altitude method: L

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: MAGOTHY AQUIFER

Well depth:838.Hole depth:Not ReportedSource of depth data:Not ReportedProject number:Not ReportedReal time data flag:0Daily flow data begin date:0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data count: 0 Peak flow data end date: 0000-00-00 Water quality data begin date: 1983-11-03

Water quality data end date:1985-08-26 Water quality data count: 5

Ground water data begin date: 1984-04-19 Ground water data end date: 1999-04-20

Ground water data count: 15

Ground-water levels, Number of Measurements: 15

	Feet below	Feet to		Feet below	Feet to
Date	Surface	Sealevel	Date	Surface	Sealevel
1999-04-20		30.53	1998-04-21		31.67
1997-04-17		30.82	1996-04-10		28.54
1994-04-12		30.42	1993-04-20		31.07
1992-04-07		29.90	1991-04-04		32.49
1990-04-05		31.96	1989-03-21		28.57
1988-04-06		28.88			
1986-06-26		27.70			
Note: The	site had been	pumped recently.			
1985-04-05		30.96	1985-04-05		30.96
1984-04-19		32.42			

D17
North
FED USGS USGS2115620
1/2 - 1 Mile

Higher

Agency cd: USGS Site no: 404612073055002

 Site name:
 S 57871. 1

 Latitude:
 404612

 Longitude:
 0730550

40.77009825 Dec lat: Dec Ion: -73.09677782 Coor meth: M Latlong datum: Coor accr: S NAD27 Dec latlong datum: NAD83 District: 36 County: 103 State: 36

Country: US Land net: Not Reported Location map: SN1458 Map scale: Not Reported

Altitude: 53.7 Altitude method: L
Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER,UPPER

Well depth:160.Hole depth:Not ReportedSource of depth data:Not ReportedProject number:Not ReportedReal time data flag:0Daily flow data begin date:0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00

Peak flow data count: 0 Water quality data begin date: 1979-10-10

Water quality data end date:1985-08-30 Water quality data count: 8

Ground water data begin date: 1984-04-19 Ground water data end date: 1985-04-05

Ground water data count: 3

Ground-water levels, Number of Measurements: 3

Date	Feet below Surface	Feet to Sealevel	Date	Feet below Surface	Feet to Sealevel
1985-04-05 1984-04-19		31.52 34.11	1985-04-05		31.52

E18
NNE
FED USGS USGS2115609
1/2 - 1 Mile

1/2 - 1 Mi Higher

Agency cd: USGS Site no: 404610073053701

Site name: S 42564. 1 Latitude: 404610

Longitude: 0730537 Dec lat: 40.7695427

 Dec Ion:
 -73.09316659
 Coor meth:
 M

 Coor accr:
 S
 Latlong datum:
 NAD27

 Dec latlong datum:
 NAD83
 District:
 36

 State:
 36
 County:
 103

Country:USLand net:Not ReportedLocation map:SN1469Map scale:Not Reported

Altitude: 57.0 Altitude method: L

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aguifer Type: Not Reported

Aquifer: GLACIAL AQUIFER,UPPER

Well depth:50Hole depth:Not ReportedSource of depth data:Not ReportedProject number:Not ReportedReal time data flag:0Daily flow data begin date:0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Water quality data begin date: 1971-09-15

Water quality data end date:1971-09-15 Water quality data count: 1

Ground water data begin date: 0000-00-00 Ground water data end date: 0000-00-00

Ground water data count: 0

Ground-water levels, Number of Measurements: 0

E19 NNE FED USGS USGS2115610

1/2 - 1 Mile Higher

TC1521842.2s Page A-20

Agency cd: USGS Site no: 404610073053702

Site name: S 40818. 1 Latitude: 404610

Longitude: 0730537 Dec lat: 40.7695427 Dec Ion: -73.09316659 Coor meth: М Latlong datum: NAD27 Coor accr: S Dec latlong datum: NAD83 District: 36 36 County: 103

Country:USLand net:Not ReportedLocation map:SN1469 8188Map scale:Not Reported

Altitude: 55.0 Altitude method: L

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi. Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: MAGOTHY AQUIFER

Well depth: Not Reported 754. Hole depth: Source of depth data: Not Reported Project number: Not Reported Real time data flag: Not Reported Daily flow data begin date: Not Reported Daily flow data end date: Daily flow data count: Not Reported Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data begin date: Not Reported Ground water data end date: Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

F20 East FED USGS USGS2116018

1/2 - 1 Mile Higher

Agency cd: USGS Site no: 404521073045101

Site name: S I18. 1A Latitude: 404521

 Longitude:
 0730451
 Dec lat:
 40.75593157

 Dec lon:
 -73.08038865
 Coor meth:
 M

Coor accr: S Latlong datum: NAD27
Dec latlong datum: NAD83 District: 36
State: 36 County: 103

Country: US Land net: Not Reported Location map: SO1497 Map scale: Not Reported

Altitude: 35.0 Altitude method: L

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: GLACIAL AQUIFER,UPPER

Well depth: 26. Hole depth: Not Reported Source of depth data: Not Reported Project number: Not Reported Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00

Peak flow data count: 0 Water quality data begin date: 1972-03-09

Water quality data end date:1972-03-09 Water quality data count: 2

Ground water data begin date: 0000-00-00 Ground water data end date: 0000-00-00

Ground water data count: 0

Ground-water levels, Number of Measurements: 0

F21 East FED USGS USGS2116019

County:

103

1/2 - 1 Mile Higher

State:

Agency cd: USGS Site no: 404521073045102

Site name: S I18. 3C Latitude: 404521

 Longitude:
 0730451
 Dec lat:
 40.75593157

 Dec lon:
 -73.08038865
 Coor meth:
 M

 Coor accr:
 S
 Latlong datum:
 NAD27

 Dec latlong datum:
 NAD83
 District:
 36

Country: US Land net: Not Reported

Location map: SO1497 Map scale: Not Reported Altitude: 35.0 Altitude method: L

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aguifer Type: Not Reported

Aquifer: GLACIAL AQUIFER, UPPER

36

Well depth:67.Hole depth:Not ReportedSource of depth data:Not ReportedProject number:Not ReportedReal time data flag:0Daily flow data begin date:0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00
Peak flow data count: 0 Water quality data begin date: 1972-03-09

Water quality data end date:1972-03-09 Water quality data count: 2

Ground water data begin date: 0000-00-00 Ground water data end date: 0000-00-00

Ground water data count: 0

Ground-water levels, Number of Measurements: 0

F22
East
1/2 - 1 Mile
Higher

Agency cd: USGS Site no: 404522073045001

Site name: S 57723. 1
Latitude: 404522

 Longitude:
 0730450
 Dec lat:
 40.75620935

 Dec lon:
 -73.08011085
 Coor meth:
 M

Coor accr: S Latlong datum: NAD27
Dec latlong datum: NAD83 District: 36
State: 36 County: 103

Country: US Land net: Not Reported Location map: SO1497 8207 Map scale: Not Reported

FED USGS

USGS2116031

Altitude: 38.0 Altitude method: L

Altitude accuracy: 0.1 Altitude datum: NGVD29

Hydrologic: Southern Long Island. New York. Area = 1660 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: N

Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: MAGOTHY AQUIFER

Well depth: Not Reported 807. Hole depth: Source of depth data: Not Reported Project number: Not Reported Real time data flag: Not Reported Daily flow data begin date: Not Reported Daily flow data end date: Daily flow data count: Not Reported Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Not Reported Water quality data begin date: Not Reported Peak flow data count: Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data end date: Not Reported Ground water data begin date: Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

State Database: NY Radon

Radon Test Results

Zip	Num Sites	< 4 Pci/L	>= 4 Pci/L	>= 20 Pci/L	Avg > 4 Pci/L	Max Pci/L
11782	3	3 (100%)	0 (0%)	0 (0%)	0.77	1.1

Federal EPA Radon Zone for SUFFOLK County: 3

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for SUFFOLK COUNTY, NY

Number of sites tested: 183

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area	0.670 pCi/L	100%	0%	0%
Basement	1.010 pCi/L	98%	2%	0%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002. 7.5-Minute DEMs correspond to the USGS

1:24,000- and 1:25,000-scale topographic quadrangle maps.

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

New York State Wetlands

Source: Department of Environmental Conservation

Telephone: 518-402-8961

Coverages are based on official New York State Freshwater Wetlands Maps as described in

Article 24-0301 of the Environmental Conservation Law.

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STATE RECORDS

New York Public Water Wells

Source: New York Department of Health

Telephone: 518-458-6731

New York Facility and Manifest Data

Source: NYSDEC Telephone: 518-457-6585

Facility and manifest data. Manifest is a document that lists and tracks hazardous waste from the generator through

transporters to a tsd facility.

RADON

State Database: NY Radon

Source: Department of Health Telephone: 518-402-7556 Radon Test Results

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

APPENDIX F FREEDOM OF INFORMATION ACT REQUESTS

CONSULTING, INC.

P.W. GROSSER

CONSULTING ENGINEERS & HYDROGEOLOGIST, P.C.

September 29, 2005

Regional Records Access Officer

New York State Department of Environmental

Conservation, Region II

47-40 21st Street

Long Island City, New York 10035

JOHNSON

AVENUE
SUITE 7

Re: Freedom of Information Request

458 Lakeland Ave.

Sayville, NY

BOHEMIA

Dear Sir or Madam:

NEW YORK P.W. Grosser Consulting, Inc. (PWGC) has been retained to prepare a Phase I

Environmental Site Assessment for the property located at 458 Lakeland Ave.,

Sayville, NY.

11716-2618

We are requesting available copies of environmental files, records, and memoranda concerning the facility. This information should include: 1) past and present underground storage tank registration(s); 2) reported spills or releases of hazardous substances; 3) generation, storage, treatment, or disposal of hazardous substances; 4) past or present groundwater, surface water, and soil investigations; 5) environmental

permits/violations.

FAX:

631-589-6353

PHONE:

We will gladly pay copying costs.

631-589-8705

Please advise if this request can be accommodated in an expedient manner. We would like to schedule an appointment to copy the file/records if this is not possible.

VISIT US AT:

www.pwgrosser.com Feel free to call with any questions or if additional information is needed to respond to

this request.

Very truly yours,

PWGC

ACEC Member Supporting Excellence in Engineering

Bryan A Devaux Project Manager

- Brigan a Dux

Engine Since 1990

CONSULTING, INC.

P.W. GROSSER

CONSULTING **ENGINEERS &** HYDROGEOLOGIST, P.C.

September 29, 2005

Ms. Wanda Vasquez

Freedom of Information Officer United States Environmental Protection Agency, Region II 290 Broadway, # 1539

AVENUE **SUITE 7**

630

JOHNSON New York, New York 10007

> **Freedom of Information Request** 458 Lakeland Ave.

Savville, NY

NEW YORK

BOHEMIA

Dear Ms. Vasquez:

11716-2618

P.W. Grosser Consulting, Inc. (PWGC) has been retained to prepare a Phase I Environmental Site Assessment for the property located at 458 Lakeland Ave., Savville, NY.

PHONE: 631-589-6353

We are requesting available copies of environmental files, records, and memoranda concerning the facility. This information should include: 1) past and present underground storage tank registration(s); 2) reported spills or releases of hazardous substances; 3) generation, storage, treatment, or disposal of hazardous substances; 4) past or present groundwater, surface water, and soil investigations; 5) environmental permits/violations.

FAX:

631-589-8705

We will gladly pay copying costs.

VISIT US AT:

www.pwgrosser.com

Please advise if this request can be accommodated in an expedient manner. We would like to schedule an appointment to copy the file/records if this is not possible.

Feel free to call with any questions or if additional information is needed to respond to this request.

ACEC Member Supporting Excellence in Engineering Since 1990

Very truly yours,

PWGC

Bryan A Devaux Project Manager

- Bryan a Dux

CONSULTING, INC.

P.W. GROSSER

CONSULTING **ENGINEERS &** HYDROGEOLOGIST, P.C.

September 29, 2005

Records Access Officer

Suffolk County Department of Health Services

15 Horseblock Place

Farmingville, New York 11738

630 **JOHNSON**

SUITE 7

Freedom of Information Request AVENUE

458 Lakeland Ave.

Sayville, NY

BOHEMIA

Dear Sir or Madam:

NEW YORK P.W. Grosser Consulting, Inc. (PWGC) has been retained to prepare a Phase I

Environmental Site Assessment for the property located at 458 Lakeland Ave.,

Sayville, NY. 11716-2618

We are requesting available copies of environmental files, records, and memoranda

concerning the facility. This information should include: 1) past and present underground storage tank registration(s); 2) reported spills or releases of hazardous substances; 3) generation, storage, treatment, or disposal of hazardous substances; 4)

past or present groundwater, surface water, and soil investigations; 5) environmental

permits/violations.

FAX:

PHONE:

631-589-6353

We will gladly pay copying costs. 631-589-8705

Please advise if this request can be accommodated in an expedient manner. We would

VISIT US AT:

www.pwgrosser.com

like to schedule an appointment to copy the file/records if this is not possible.

Feel free to call with any questions or if additional information is needed to respond to

this request.

Very truly yours,

PWGC

ACEC Member Supporting Excellence in Engineering

Bryan A Devaux

Project Manager

- Bryan a Dux

Since 1990

CONSULTING, INC.

P.W. GROSSER

CONSULTING **ENGINEERS &** HYDROGEOLOGIST, P.C.

September 29, 2005

Ms. Joan Johnson Town Clerk Town of Islip 655 Main Street

JOHNSON AVENUE SUITE 7

630

Islip, New York 11751

Freedom of Information Request 458 Lakeland Ave. Sayville, NY

BOHEMIA

Ms. Johnson: **NEW YORK**

P.W. Grosser Consulting, Inc. (PWGC) has been retained to prepare a Phase I Environmental Site Assessment for the property located at 458 Lakeland Ave., 11716-2618

Sayville, NY.

We are requesting available copies of environmental files, records, and memoranda concerning the facility. This information should include: 1) Building Plans, 2) past 631-589-6353 and present underground storage tank registration(s); 3) Onsite- Sanitary system

information.

We will gladly pay copying costs.

FAX:

PHONE:

631-589-8705 Please advise if this request can be accommodated in an expedient manner. We would

like to schedule an appointment to copy the file/records if this is not possible.

VISIT US AT:

Feel free to call with any questions or if additional information is needed to respond to www.pwgrosser.com

this request.

Very truly yours,

PWGC

ACEC Member Supporting Excellence in Engineering Since

1990

Bryan A Devaux Project Manager

- Bryan a Drex

CONSULTING, INC.

P.W. GROSSER

CONSULTING ENGINEERS & HYDROGEOLOGIST, P.C.

September 29, 2005

Records Access Officer

Suffolk County Department of Health Services

15 Horseblock Place

630

NOSMHOL AVENUE SUITE 7

Farmingville, New York 11738

Freedom of Information Request 458 Lakeland Ave.

Sayville, NY

BOHEMIA

Dear Sir or Madam:

NEW YORK

P.W. Grosser Consulting, Inc. (PWGC) has been retained to prepare a Phase I Environmental Site Assessment for the property located at 458 Lakeland Ave.,

11716-2618

631-589-6353

PHONE:

We are requesting available copies of environmental files, records, and memoranda concerning the facility. This information should include: 1) past and present underground storage tank registration(s); 2) reported spills or releases of hazardous substances; 3) generation, storage, treatment, or disposal of hazardous substances; 4)

past or present groundwater, surface water, and soil investigations; 5) environmental permits/violations.

FAX:

631-589-8705

We will gladly pay copying costs.

VISIT US AT:

Please advise if this request can be accommodated in an expedient manner. We would like to schedule an appointment to copy the file/records if this is not possible.

www.pwgrosser.com

Feel free to call with any questions or if additional information is needed to respond to

10/13/05

a Laylee

ACEC Member Supporting Excellence in Engineering Since

1990

Very truly yours, **PWGC**

- Bryan a Duy Bryan A Devaux Project Manager

NA GEN O'S VALVE OBJUSTICES OBJUS

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

OCT - 6 2005

Mr. Bryan Devaux Project Manager P.W.G.C. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716-2618

Re: Freedom of Information Request No. 02-RIN-00014-06

Dated: September 29, 2005

Dear Mr. Devaux:

Your request for information has been referred to this branch for response. We have searched the Resource Conservation and Recovery Act (RCRA) files and/or computer database as appropriate to respond to your request. In addition, you may also receive more information from other program areas within this Regional Office.

We were unable to find hazardous waste (RCRA) information concerning the properties at 458 Lakeland Avenue in Sayville, and 81 North Saxon Avenue in Bayshore, New York.

For information on Underground Storage Tanks (USTs), please contact New York State Department of Environmental Conservation (NYSDEC) at the enclosed address as it is responsible for keeping records and tracking incidents related to USTs.

If you consider this response to be a denial, you may submit a written appeal to HQ FOIA OPERATIONS STAFF, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Avenue, N.W., Washington, D.C. 20460. The appeal must be made in writing, and must be received within 30 calendar days of the date of this response to receive consideration. The Agency will not consider appeals received after the 30-day limit. The appeal should be marked "Freedom of Information Act Appeal", and should reference the Freedom of Information Request Number of this response.

Also, RCRA information is now available on the World Wide Web as described on the enclosed sheet.

<u>S</u>tranton ng ban milingsika.

Please include the above referenced request number in any subsequent communication relating to this response.

်နော် ရှန်းရှင်းသို့ နှင့် မြို့သည်။ သို့သည်တွင် မြို့သူမှုနှင့်သည့်နှင့်သည်။ လုပ်လုပ်ကို လုပ်ကို များပ

Sincerely yours,

Adoloh Everett, P.E.

Chief, RERA Programs Branch

RECEIVED OCT 1 1 2005

Enclosures

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 2 290 Broadway New York, NY 10007

October 03, 2005

Mr. BRYAN DEVAUX P.W. GROSSER 630 JOHNSON AVENUE SUITE 7 Bohemia, NY, 11716 United States

Re:

Freedom of Information Request No. 02-RIN-00014-06

Dated: September 29, 2005

Subject: 458 LAKELAND AVENUE & 81 NORTH SAXON AVENUE BOTH IN LONG ISLAND, NY

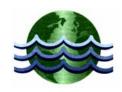
Dear Mr. DEVAUX:

Your request for information has been referred to this branch for response. We have searched our databases as appropriate to your request. However, our research did not reveal any air or water information that was responsive to your request. In addition, you may also receive more information from other program areas within this Regional Office.

Please be advised that now you can retrieve the environmental profile of a facility including information regarding toxic chemical releases, water permits, hazardous waste handling processes, "Superfund" status and air emissions from the EPA's web page. The address is www.epa.gov/enviro.

If you consider this response to be a denial, you may submit a written appeal to HQ FOIA OPERATIONS STAFF, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Avenue, N.W., Washington, D.C. 20460. The appeal must be made in writing, and must be received within 30 calendar days of the date of this response to receive consideration. The Agency will not consider appeals received after the 30-day limit. The appeal should be marked "Freedom of Information Act Appeal," and should reference the Freedom of Information Request Number of this response.

Please include the above referenced request number(s) in any subsequent communication relating to this response.


Sincerely yours,

Patrick J. Harvey, Chief

Compliance Assistance and Programs Support Branch

RECEIVED OCT 1 1 2005

CONSULTING, INC

P.W. GROSSER

CONSULTING ENGINEERS & HYDROGEOLOGIST, PC April 6, 2006

Mr. Luigi Salcedo R Squared LLC 555 Madison Ave.

555 Madison Ave, 12th Floor New York, NY 10022

Re: Supplemental Phase II Environmental Site Assessment Island Hills Golf Club, Parcels 1 and 2, Sayville, New York

Dear Mr. Salcedo:

630 JOHNSON AVENUE SUITE 7

On March 17, 2006, PW Grosser Consulting (PWGC) performed Supplemental Phase II sampling at the above referenced property. The supplemental sampling consisted of sampling three primary leaching structures as well as the collection of two groundwater samples.

BOHEMIA

NEW YORK

11716-2618

PHONE:

631-589-6353

FAX:

631-589-8705

VISIT US AT:

www.pwgrosser.com

Background

In the course of a Phase I performed at Parcels 1 and 2 for the subject property, PWGC identified one recognized environmental condition which required additional investigation / sampling. This condition was related to the on-site sanitary system for the Clubhouse building, which discharged to leaching structures located on the subject property. The Clubhouse is not part of the subject property. In order to address this issue further, PWGC recommended that samples be collected from the sanitary system.

On February 21, 2006 PWGC conducted a Phase II investigation which included an investigation and limited sampling of the sanitary system. Based upon the inspection, the sanitary system consisted of two separate systems. One system consisted of a single leaching structure (S-1) and the second system consisted of a suspected septic tank, a distribution pool, five primary leaching structures (S-2, S-3, S-4, S-5, and S-6), and secondary overflow structures. A figure showing the structure locations is shown on Figure 1.

Three samples were collected, S-1 from the first system, and S-4, and S-6 from the second system, sample results are presented on the attached Tables 1 through 4. These samples were submitted for analysis of volatile organic compounds (VOCs), Semi-VOCs (SVOCs) and metals in accordance with Suffolk County Department of Health Services' Article 12 –SOP 9-95 *Pumpout and Soil Cleanup Criteria* (SCDHS SOP9-95). In addition, one sample, S-4, was submitted for pesticide/herbicide analysis and detections were reported. Evaluation of the sample results determined that sanitary structure S-4 has VOC concentrations in excess of action limits contained in SCDHS SOP9-95 and warrants remediation. The most significant detection was 1,2-dichlorobenzene at 1,728,304 ug/kg, which exceeds its respective SCDHS action limit of 15,000 ug/kg. Based upon these results, PWGC recommended:

- Sampling of the three un-sampled primary leaching structures, S-2, S-3, and S-5.
- Sampling of secondary overflow structures associated with S-4.
- Analyzing samples for pesticides/herbicides analysis, based upon results of S-4.
- Sampling groundwater downgradient of structure S-4.

Scope of Work

Sediment Sampling

On March 17, 2006, PWGC collected sediment samples from the base of S-2, S-3, and S-5. There were no identified secondary overflow structures associated with S-4 and it appears that S-5 is the only primary structure with overflow structures and therefore, no samples were collected. Sediment samples were collected using a properly decontaminated stainless steel handheld auger. The sediment was placed in a stainless steel bowl, homogenized and placed directly into laboratory supplied glassware. Prior to mixing, a grab sample was collected for VOC analysis. Non-dedicated equipment was decontaminated using a non-phosphate detergent scrub and distilled water rinse.

The sediment samples were analyzed for VOCs, SVOCs and metals as per SCDHS SOP 9-95, as well as pesticides/herbicides. In addition, PWGC re-sampled S-1 and S-6 and submitted for pesticide/herbicide analysis.

Analytical results for the six primary leaching structures are summarized on the attached Tables 1 through 4 and copies of the laboratory report forms are attached. Sample results for VOCs, SVOCs, metals and pesticides/herbicides from S-1, S-2, S-3, S-5 and S-6 met applicable SCDHS 9-95 action level criteria. As shown in the attached tables, S-4 is the only structure with concentrations in excess of SCDHS 9-95 action levels and warrants remediation.

Groundwater Sampling

PWGC collected two groundwater samples downgradient of S-4, locations are illustrated on Figure 1. Based upon the SCDHS's groundwater elevation maps, groundwater flow direction in the vicinity of the site is to the south-southwest. However, based upon seasonal fluctuations in elevation, variation in flow direction may occur so the groundwater sample locations were positioned south-southeast and south-southwest from S-4, at a distance of approximately 10 feet.

The groundwater samples were collected using direct-push technology to drive the temporary well screen to just below the water table. Polyethylene tubing fitted with a check valve was lowered through the temporary well point to extract groundwater. Extraction was performed by oscillating the tubing and groundwater was decanted directly into laboratory supplied glassware. Equipment was decontaminated between sample locations using a non-phosphate detergent scrub and tap water rinse. The sample was submitted for analysis for VOCs with the results compared to the groundwater standards contained in the New York State Department of Environmental Conservation's (NYSDEC) *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, June 1998.

The depth to water at the site was approximately 20 feet below grade at the time of sampling. Groundwater results are summarized in Table 5 and the samples were designated as S-4 GW-E and S-4 GW-W. Chlorobenzene and 1,2 dichlorobenzene were detected in excess of the groundwater standard of 3 ug/L in both samples, with concentrations higher in S-4 GW-W. In addition to those two VOCs in S-4 GW-W, four other compounds were detected in excess of NYSDEC groundwater standards and were: 1,4-dichlorobenzene, acetone, benzene and toluene. Chlorobenzene and dichlorobenzene compounds are present in elevated concentrations in the sediments of S-4, which is likely the source. Acetone can be a breakdown product of cleaners containing isopropanol and does not typically adhere to sediments, making it very mobile in the subsurface. The concentration of acetone was 58 ug/L and the groundwater standard is 50 ug/L. The presence of benzene and toluene may also be the result of solvents or degreasers but these compounds were not found in the sediments in elevated concentrations and may be a result of an upgradient source.

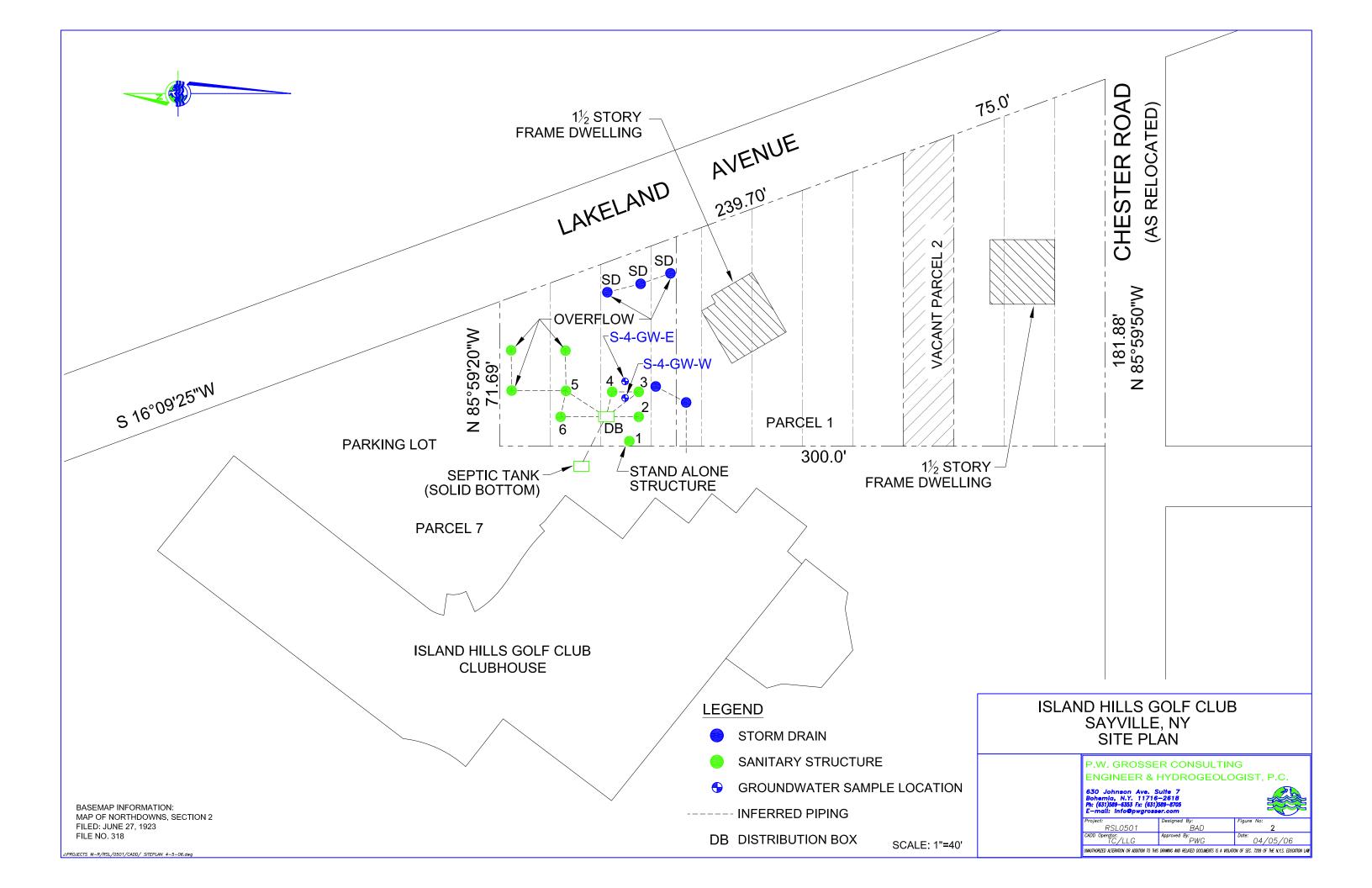
Conclusions and Recommendations

Of the six primary leaching structures sampled, one structure (S-4) has concentrations in excess of SCDHS action levels. Based upon the concentrations present in S-4, PWGC recommends that the structure be remediated by removal of sediments. PWGC recommends that the remediation be performed under the direction of the SCDHS so that a no further action letter may be received from the County upon completion. After the sediments are removed, an endpoint sample

should be collected. The endpoint results will be used to determine the need for further action and documented in a closure report to the SCDHS.

The groundwater sampling performed indicated concentrations of site contaminants in excess of NYSDEC standards and it is unlikely that these concentrations alone would warrant further action by the SCDHS. Given the initial concentration in S-4 and that concentrations of the same contaminants were detected in groundwater, it is possible that we will not be able to obtain an acceptable endpoint sample without undermining the sanitary system. In the absence of a clean endpoint, it is possible the SCDHS would require groundwater monitoring until it is confirmed that the source has been adequately removed.

If you have any guestions or comments, please do not hesitate to contact this office.


Very truly yours,

P.W. Grosser Consulting, Inc.

Bryan A Devaux Project Manager

Lisa Santoro Vice-President

Enc. Is

Island Hills Golf Club Sanitary System Sampling Table 1 - VOCs

Compound	SCDHS Action	SCDHS Cleanup	S-1	S-2	S-3	S-4	S-5	S-6
·	Levels (#)	Objectives (1)	2/21/06	3/17/06	3/17/06	2/21/06	3/17/06	2/21/06
Volatile Organic Compounds by 82								
1,1,1,2-Tetracloroethane	600	300	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	1,600	800	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	1,200	600	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	600	300	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	400	200	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	800	400	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	600	300	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	4,800	2,400	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	800	400	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	15,000	10,000	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	6,800	3,400	ND	ND	ND	47,569	ND	ND
1,2,4-Trimethylbenzene	4,800	2,400	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	600	300	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	15,000	8,000	ND	ND	ND	1,728,304	ND	91
1,2-Dichloroethane	200	100	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	600	300	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5,200	2,600	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3,200	1,600	ND	ND	ND	31,736	ND	ND
1,3-Dichloropropane	600	300	ND	ND	ND	ND	ND	ND
1.4-Dichlorobenzene	15,000	8,000	ND	ND	ND	511,639	ND	43
2,2-Dichloropropane	600	300	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	600	300	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	3,600	1,800	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	3,600	1,800	ND	ND	ND	11,773	ND	ND
4-Methyl-2-Pentanone (MIBK)	2,000	1,000	ND	ND	ND	ND	ND	ND
Acetone	**	**	ND	ND	ND	ND	ND	ND
Benzene	120	60	ND	ND	ND	ND	35	ND
Bromobenzene	1,600	800	ND	ND	ND	ND	ND	ND
Bromochloromethane	400	200	ND	ND	ND	ND	ND	ND ND
Bromodichloromethane	600	300	ND	ND ND	ND	ND ND	ND	ND ND
Bromoform	1,000	500	ND	ND	ND	ND	ND	ND ND
Carbon Tetrachloride	1,200	600	ND	ND ND	ND	ND ND	ND	ND ND
Chlorobenzene	3,400	1,700	64	28	61	354,182	414	239
Chloroethane	400	200	ND	ND	ND	ND	ND	ND
Chloroform	600	300	1	ND	ND		ND ND	ND ND
	3,600		ND			ND		
Chlorotoluene(s)	,	1,800	ND	ND	ND	ND	ND	ND ND
cis-1,2-Dichloroethene	600	300	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	600	300	ND	ND	ND	ND	ND	ND
Dibromochloromethane (4.0.B)	600	300	ND	ND	ND	ND	ND	ND
Dibromochloropropane (1,2-Dibromo-	1,000	500	ND	ND	ND	ND	ND	ND
3-chloropropane)			1					
Dibromomethane	400	200	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	600	300	ND	ND	ND	ND	ND	ND
Ethylbenzene	11,000	5,500	ND	ND	ND	ND	ND	ND
Freon 113 (1,1,2-	12,000	6,000	ND	ND	ND	ND	ND	ND
Trichlorofluoroethane)	·	-	שויו					
Hexachlorobutadiene	15,000	10,000	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5,200	2,600	ND	ND	ND	ND	ND	ND
m + p Xylene	2,400 *	1,200	ND	ND	ND	ND	ND	ND
Methylene Chloride	200	100	ND	ND	ND	ND	ND	ND
Methyl-Tertiary-Butyl-Ether (MTBE)	1,200	600	ND	ND	ND	ND	ND	ND

Island Hills Golf Club Sanitary System Sampling Table 1 - VOCs

Compound	SCDHS Action Levels (#)	SCDHS Cleanup Objectives (1)	S-1 2/21/06	S-2 3/17/06	S-3 3/17/06	S-4 2/21/06	S-5 3/17/06	S-6 2/21/06
Volatile Organic Compounds by 82	60 - μg/kg							
Naphthalene	15,000	10,000	ND	ND	ND	ND	ND	ND
n-Butyl benzene	6,800	3,400	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5,000	2,500	ND	ND	ND	ND	ND	ND
o-Xylene	2,400 *	1,200	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	7,600	3,800	ND	ND	ND	ND	ND	ND
p-Ethyltoluene	3,600	1,800	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	7,800	3,900	ND	ND	ND	ND	ND	ND
sec-Butyl benzene	10,000	5,000	ND	ND	ND	ND	ND	ND
Styrene	2,000	1,000	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	6,800	3,400	ND	ND	ND	ND	ND	ND
Tetrachloroethene	2,800	1,400	ND	ND	ND	ND	ND	ND
Toluene	3,000	1,500	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	600	300	ND	ND	ND	ND	ND	ND
trans-1,3-Dicholorpropene	600	300	ND	ND	ND	ND	ND	ND
Trichloroethene	1,400	700	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	1,600	800	ND	ND	ND	ND	ND	ND
Vinyl Chloride	400	200	ND	ND	ND	ND	ND	ND
Xylene(s)	2,400	1,200	ND	ND	ND	ND	ND	ND

Notes:

- (#) Suffolk County Dept. of Health Services, Article 12 SOP 9-95, Action Levels, July 1998.
- (1) Suffolk County Dept. of Health Services, Article 12 SOP 9-95, Cleanup Objectives, July 1998.
- * Refers to the sum of all isomers
- ** Remediation determined on a case by case basis

Bold text denotes concentrations exceeding SCDHS Action Levels.

ND - Not Detected

Island Hills Golf Club Sanitary System Sampling Table 2 - SVOCs

Compound	SCDHS Action Levels (#)	SCDHS Cleanup Objectives (1)	S-1 2/21/06	S-2 3/17/06	S-3 3/17/06	S-4 2/21/06	S-5 3/17/06	S-6 2/21/06
Semi-Volatile Organic Con	npounds by 8270	- μg/kg						
Acenaphthene	75,000	50,000	ND	ND	ND	ND	ND	ND
Anthracene	75,000	50,000	ND	ND	45	47	ND	ND
Benzo(a)anthracene	6,000	3,000	309	42	329	127	56	ND
Benzo(a)pyrene	22,000	11,000	338	ND	298	62	ND	ND
Benzo(b)fluoranthene	2,200	1,100	629	91	537	93	ND	ND
Benzo(g,h,i)perylene	75,000	50,000	296	44	259	ND	ND	ND
Benzo(k)fluoranthene	2,200	1,100	255	ND	233	ND	ND	ND
Chrysene	800	400	531	76	462	115	61	ND
Dibenzo(a,h)anthracene	75,000	50,000	42	ND	53	ND	ND	ND
Fluoranthene	75,000	50,000	929	100	991	225	112	ND
Fluorene	75,000	50,000	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	6,400	3,200	245	ND	214	ND	ND	ND
Phenanthrene	75,000	50,000	275	ND	383	202	ND	ND
Pyrene	75,000	50,000	714	100	752	225	126	43

Notes:

- (#) Suffolk County Dept. of Health Services, Article 12 SOP 9-95, Action Levels, July 1998.
- (1) Suffolk County Dept. of Health Services, Article 12 SOP 9-95, Cleanup Objectives, July 1998.

Bold text denotes concentrations exceeding SCDHS Action Levels.

ND - Not Detected

Island Hills Golf Club Sanitary System Sampling Table 3 - Metals

Compound	SCDHS Action Levels (#)	SCDHS Cleanup Objectives (1)	Eastern USA Baskground Concentrations	S-1 2/21/06	S-2 3/17/06	S-3 3/17/06	S-4 2/21/06	S-5 3/17/06	S-6 2/21/06
SCDHS Metals	mg/kg								
Arsenic	25	7.5	3.0 - 12	3.12	ND	ND	3.75	ND	ND
Beryllium	8	1.6	0.0 - 1.75	ND	ND	ND	ND	ND	ND
Cadmium	10	1	0.1 - 1	ND	ND	ND	2.69	ND	ND
Chromium	100	10	1.5 - 40	5.6	6.82	2.76	18	3.05	ND
Copper	500	25	1.0 - 50	179	99.9	12.9	1,143	94	24.7
Lead	400	100	4.0 - 61	54	7.44	2.29	74.8	8.17	3.78
Mercury	2	0.1	0.001 - 0.2	0.032	0.067	ND	1.09	ND	0.033
Nickel	1,000	13	0.5 - 25	4	4	ND	13	2	1.67
Silver	100	5	NS	3.76	ND	ND	21.4	ND	ND

Notes:

(#) - Suffolk County Dept. of Health Services, Article 12 - SOP 9-95, Action Levels, July 1998.

(1) - Suffolk County Dept. of Health Services, Article 12 - SOP 9-95, Cleanup Objectives, July 1998.

Bold text denotes concentrations exceeding SCDHS Action Levels.

ND - Not Detected

Island Hills Golf Club Sanitary System Sampling

Table 4 - Pesticides / Herbicides

Compound	NYSDEC	S-1	S-2	S-3	S-4	S-5	S-6
Compound	Clean-up Objectives	3/17/06	3/17/06	3/17/06	2/21/06	3/17/06	3/17/06
Pesticides 8081 - µg/kg							
4,4'-DDD	2,900	14	19	ND	32.1	ND	12
4,4'-DDE	2,100	ND	ND	ND	31.5	ND	ND
4,4'-DDT	2,100	ND	ND	ND	ND	ND	ND
Aldrin	41	ND	ND	ND	ND	ND	ND
alpha-BHC	110	ND	ND	ND	ND	ND	ND
beta-BHC	200	ND	ND	ND	ND	ND	ND
Chlordane	540	34	ND	ND	ND	ND	ND
delta-BHC	300	ND	ND	ND	ND	ND	ND
Dieldrin	44	ND	ND	ND	ND	ND	ND
Endosulfan 1	900	ND	ND	ND	ND	ND	ND
Endosulfan 2	900	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	1,000	ND	ND	ND	ND	ND	ND
Endrin	100	ND	ND	ND	ND	ND	ND
Endrin Keytone	N/A	ND	ND	ND	ND	ND	ND
gamma-BHC (Lindane)	60	ND	ND	ND	ND	ND	ND
gamma-Chlordane	540	ND	ND	ND	ND	ND	ND
Heptachlor	100	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	20	ND	ND	ND	ND	ND	ND
Methoxychlor	**	ND	ND	ND	ND	ND	ND
Herbicides 8151 A - µg/kg							
2,4,5-T	1,900	ND	ND	ND	ND	ND	ND
Dicamba	NS	ND	ND	ND	ND	ND	ND
2,4-DB	NS	ND	ND	ND	ND	ND	ND
Silvex (2,4,5-TP)	700	ND	ND	ND	ND	ND	ND
2,4-D	500	ND	ND	ND	ND	ND	ND

Notes:

* - PCB cleanup objective is 1.0 for surface soils and 10 for sub-surface soils.

** - As per TAGM #4046, Total VOCs < 10 ppm.

All Units are µg/Kg

Bold text denotes concentrations exceeding NYSDEC

MDL - Method detection limit

ND - Non-Detect

Island Hills Golf Club Sanitary System Sampling Table 5 - Groundwater VOCs

	NYSDEC Groundwater	S-4 - GW-E	S-4 - GW-W	
Compound	Standards	3/17/06	3/17/06	
Volatile Organic Compounds by 8260 - μg/L	Otaliaalao	0/11/00	0/11/00	
1,1,1,2-Tetrachloroethane	5	ND	ND	
1,1,1-Trichloroethane	5	ND	ND	
1,1,2,2-Tetrachloroethane	5	ND	ND	
1,1,2-Trichloroethane	1	ND	ND	
1,1-Dichloroethane	4	ND	ND	
1,1-Dichloroethene	5	ND	ND	
1,1-Dichloropropene	5	ND	ND	
1,2,3-Trichlorobenzene	5	ND	ND	
1,2,3-Trichloropropane	0.04	ND	ND	
1,2,4,5-Tetramethylbenze	5	ND	ND	
1,2,4-Trichlorobenzene	5	ND	ND	
1,2,4-Trimethylbenzene	5	ND	ND	
1,2-Dibromoethane	NS	ND	ND	
1,2-Dichlorobenzene	3	10	35	
1,2-Dichloroethane	0.6	ND	ND	
1,2-Dichloropropane	1	ND	ND	
1,3,5-Trimethylbenzene	5	ND	ND	
1,3-Dichlorobenzene	3	ND	ND	
1,3-Dichloropropane	5	ND	ND	
1,4-Dichlorobenzene	3	ND	10	
2,2-Dichloropropane	5	ND	ND	
2-Butanone (MEK)	50*	ND	ND	
2-Chlorotoluene	5	ND	ND	
4-Chlorotoluene	5	ND	ND	
4-Methyl-2-pentanone (MIBK)	NS	ND	ND	
Acetone	50**	ND	58	
Benzene	1	ND	3.7	
Bromobenzene	5	ND	ND	
Bromochloromethane	5	ND	ND	
Bromodichloromethane	50*	ND	ND	
Bromoform	50*	ND	ND	
Bromomethane	5	ND	ND	
Carbon Tetrachloride	5	ND	ND	
Chlorobenzene	5	7	72	
Chlorodibromomethane	NS	ND	ND	
Chlorodifluoromethane	NS	ND	ND	
Chloroethane	5	ND	ND	
Chloroform	7	ND	ND	
Chloromethane	5	ND	ND	
cis-1,2-Dichloroethene	5	ND	ND	

Island Hills Golf Club Sanitary System Sampling Table 5 - Groundwater VOCs

Compound	NYSDEC Groundwater	S-4 - GW-E	S-4 - GW-W
·	Standards	3/17/06	3/17/06
Volatile Organic Compounds by 8260 - μg/L			
cis-1,3-Dichloropropene	5	ND	ND
Dibromochloromethane	NS	ND	ND
Dibromochloropropane	NS	ND	ND
Dibromomethane	5	ND	ND
Dichlordifluoromethane	5	ND	ND
Ethyl Benzene	5	ND	ND
Freon 113 (1,1,2-Trichloro-1,2,2-trifluoroethane)	NS	ND	ND
Hexachlorobutadiene	0.5	ND	ND
Isopropylbenzene	5	ND	ND
m + p Xylene	5	ND	ND
Methylene Chloride	5	ND	ND
Methyl-Tertiary-Butyl-Ether (MTBE)	10	ND	ND
Naphthalene	10*	ND	ND
n-Butylbenzene	5	ND	ND
n-Propylbenzene	5	ND	ND
o-Xylene	5	ND	ND
p-Diethylbenzene	NS	ND	ND
p-Ethyltoluene	NS	ND	ND
p-Isopropyltoluene	5	ND	ND
sec-Butylbenzene	5	ND	ND
Styrene	5	ND	ND
tert-Butylbenzene	5	ND	ND
Tetrachloroethene	5	ND	ND
Toluene	5	ND	23
trans-1,2-Dichloroethene	5	ND	ND
trans-1,3-Dicholorpropene	5	ND	ND
Trichloroethylene	5	ND	ND
Trichlorofluoromethane	5	ND	ND
Vinyl Chloride	2	ND	ND
Xylene (Total)	5	ND	ND

Notes:

Bold text denotes concentrations exceeding NYSDEC Groundwater Standards

ND - Not Detected

^{* -} Refers to the sum of all isomers

^{** -} Remediation determined on a case by case basis

"TOMORROWS ANALYTICAL SOLUTIONS TODAY"

1 of 27 pages

March 23, 2006

P.W. Grosser Consulting Bryan Devaux 630 Johnson Avenue, Suite 7 Bohemia, NY 11716

Re: Island Hills Golf Course, Lakeland Ave., Sayville

Dear Mr. Devaux:

Enclosed please find the Laboratory Analysis Report(s) for sample(s) received on March 17, 2006. Long Island Analytical Laboratories analyzed the samples on March 22, 2006 for the following:

CLIENT ID	ANALYSIS
S-5	SCDH Volatiles, Semi-Volatiles,
	Metals, Pesticides and Herbicdes
S-3	SCDH Volatiles, Semi-Volatiles,
	Metals, Pesticides and Herbicdes
S-2	SCDH Volatiles, Semi-Volatiles,
	Metals, Pesticides and Herbicdes
S-1	SCDH Pesticides and Herbicdes
S-6	SCDH Pesticides and Herbicdes
S-4-GW-E	SCDH Volatiles
S-4-GW-W	SCDH Volatiles

Samples received at 8°C.

If you have any questions or require further information, please call at your convenience. Report shall not be reproduced except in full, without the written approval of the laboratory. Long Island Analytical Laboratories would like to thank you for the opportunity to be of service to you.

Best Regards,

Long Island Analytical Laboratories, Inc.

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-5)
Date received: 3/17/06	Laboratory ID: 1105106
Date extracted: 3/20/06	Matrix: Soil
Date analyzed: 3/20/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<25
CHLOROMETHANE	74-87-3	5 ug/kg	<25
VINYL CHLORIDE	75-01-4	5 ug/kg	<25
BROMOMETHANE	74-83-9	5 ug/kg	<25
CHLOROETHANE	75-00-3	5 ug/kg	<25
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<25
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<25
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<25
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<25
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<25
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<25
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<25
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<25
CHLOROFORM	67-66-3	5 ug/kg	<25
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<25
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<25
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<25
BENZENE	71-43-2	5 ug/kg	35
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<25
TRICHLOROETHENE	79-01-6	5 ug/kg	<25
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<25
DIBROMOMETHANE	74-95-3	5 ug/kg	<25
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<25
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<25
TOLUENE	108-88-3	5 ug/kg	<25
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<25
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<25
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<25
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<25
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<25
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<25
CHLOROBENZENE	108-90-7	5 ug/kg	414
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<25
ETHYLBENZENE	100-41-4	5 ug/kg	<25
STYRENE	100-42-5	5 ug/kg	<25
BROMOFORM	75-25-2	5 ug/kg	<25

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-5)
Date received: 3/17/06	Laboratory ID: 1105106
Date extracted: 3/20/06	Matrix: Soil
Date analyzed: 3/20/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<25
BROMOBENZENE	108-86-1	5 ug/kg	<25
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<25
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<25
n-PROPYLBENZENE	103-65-1	5 ug/kg	<25
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<25
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<25
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<25
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<25
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<25
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<25
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<25
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<25
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<25
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<25
n-BUTYLBENZENE	104-51-8	5 ug/kg	<25
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<25
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<25
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<25
NAPHTHALENE	91-20-3	5 ug/kg	<25
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<25
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<25
FREON 113	76-13-1	5 ug/kg	<25
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<25
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<25
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<25
ACETONE	67-64-1	50 ug/kg	<250
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<25
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<50
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<25
p & m-XYLENE	1330-20-7	10 ug/kg	<50
o-XYLENE	1330-20-7	5 ug/kg	<25
MTBE	1634-04-4	5 ug/kg	<25
IDL = Minimum Detection Limit		Coloulate	

MDL = Minimum Detection Limit.

MDL's raised due to matrix interference.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

4 of 27 pages

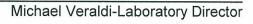
Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-5)	
Date received: 3/17/06	Laboratory ID: 1105106	
Date extracted: 3/21/06	Matrix: Soil	
Date analyzed: 3/21/06	ELAP #: 11693	

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	126
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	56
Fluoranthene	206-44-0	40 ug/kg	112
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	61
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis



Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-5)
Date received: 3/17/06	Laboratory ID: 1105106
Date extracted: 3/21/06	Matrix: Soil
Date analyzed: 3/21/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	3.05
COPPER, Cu	1.65 mg/kg	93.7
MERCURY, Hg	0.020 mg/kg	<0.020
NICKEL, Ni	1.65 mg/kg	2.47
LEAD, Pb	1.65 mg/kg	8.17

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Mishael Verald

6 of 27 pages

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-5)
Date received: 3/17/06	Laboratory ID: 1105106
Date extracted: 3/22/06	Matrix: Soil
Date analyzed: 3/22/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	<15
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

7 of 27 pages

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-5)
Date received: 3/17/06	Laboratory ID: 1105106
Date extracted: 3/22/06	Matrix: Soil
Date analyzed: 3/22/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-3)
Date received: 3/17/06	Laboratory ID: 1105107
Date extracted: 3/20/06	Matrix: Soil
Date analyzed: 3/20/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<25
CHLOROMETHANE	74-87-3	5 ug/kg	<25
VINYL CHLORIDE	75-01-4	5 ug/kg	<25
BROMOMETHANE	74-83-9	5 ug/kg	<25
CHLOROETHANE	75-00-3	5 ug/kg	<25
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<25
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<25
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<25
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<25
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<25
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<25
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<25
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<25
CHLOROFORM	67-66-3	5 ug/kg	<25
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<25
CARBON TETRACHLORIDE	. 56-23-5	5 ug/kg	<25
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<25
BENZENE	71-43-2	5 ug/kg	<25
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<25
TRICHLOROETHENE	79-01-6	5 ug/kg	<25
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<25
DIBROMOMETHANE	74-95-3	5 ug/kg	<25
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<25
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<25
TOLUENE	108-88-3	5 ug/kg	<25
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<25
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<25
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<25
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<25
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<25
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<25
CHLOROBENZENE	108-90-7	5 ug/kg	61
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<25
ETHYLBENZENE	100-41-4	5 ug/kg	<25
STYRENE	100-42-5	5 ug/kg	<25
BROMOFORM	75-25-2	5 ug/kg	<25

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-3)
Date received: 3/17/06	Laboratory ID: 1105107
Date extracted: 3/20/06	Matrix: Soil
Date analyzed: 3/20/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<25
BROMOBENZENE	108-86-1	5 ug/kg	<25
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<25
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<25
n-PROPYLBENZENE	103-65-1	5 ug/kg	<25
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<25
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<25
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<25
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<25
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<25
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<25
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<25
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<25
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<25
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<25
n-BUTYLBENZENE	104-51-8	5 ug/kg	<25
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<25
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<25
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<25
NAPHTHALENE	91-20-3	5 ug/kg	<25
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<25
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<25
FREON 113	76-13-1	5 ug/kg	<25
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<25
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<25
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<25
ACETONE	67-64-1	50 ug/kg	<250
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<25
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<50
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<25
p & m-XYLENE	1330-20-7	10 ug/kg	<50
o-XYLENE	1330-20-7	5 ug/kg	<25
MTBE	1634-04-4	5 ug/kg	<25

MDL = Minimum Detection Limit.

Calculated on a wet weight basis MDL's raised due to matrix interference.

Michael Veraldi-Laboratory Director

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course		
	(S-3)		
Date received: 3/17/06	Laboratory ID: 1105107		
Date extracted: 3/21/06	Matrix: Soil		
Date analyzed: 3/21/06	ELAP #: 11693		

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	45
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	383
Pyrene	129-00-0	40 ug/kg	752
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	329
Fluoranthene	206-44-0	40 ug/kg	991
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	537
Benzo(k)fluoranthene	207-08-9	40 ug/kg	233
Chrysene	218-01-9	40 ug/kg	462
Benzo(a)Pyrene	50-32-8	40 ug/kg	298
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	259
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	214
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	53

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Mishael Verald

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
Date received: 3/17/06	(S-3)
Date extracted: 3/21/06	Laboratory ID: 1105107 Matrix: Soil
Date analyzed: 3/21/06	
Date analyzed. 3/2 1/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	2.76
COPPER, Cu	1.65 mg/kg	12.9
MERCURY, Hg	0.020 mg/kg	<0.020
NICKEL, Ni	1.65 mg/kg	<1.65
LEAD, Pb	1.65 mg/kg	2.29

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Data File Name

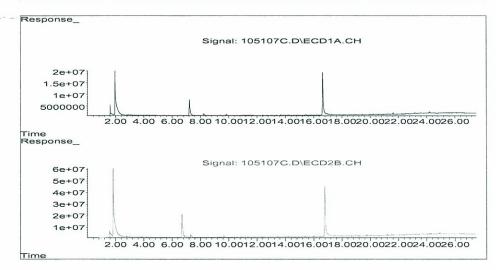
105107C.D

8080 15G/15ML

Operator

JZ

Date Acquired


22 Mar 2006 11:29

Vial Number

56

8080 ANALYSIS

	71117121010	
PARAMETER	CAS NO.	RESULTS ug/kg
aldrin	309-00-2	<5
a-BHC	319-84-6	<5
b-BHC	319-85-7	<5
d-BHC	319-86-8	<5
r-BHC	58-89-9	<5
CHLORDANE	12789-03-6	<15
44-DDD	72-54-8	<5
44-DDE	72-55-9	<5
44-DDT	50-29-3	<5
Dieldrin	60-57-1	<5
Endosulfant I	959-98-8	<5
Endosulfant II	33212-65-9	<5
Endosulfant sulfate	1031-07-8	<5
Endrin	72-20-8	<5
Endrin aldehyde	7421-93-4	<5
Endrin ketone	5394-70-5	<5
Hepatachlor	76-44-8	<5
Heptachlor epoxide	1024-57-3	<5
Methoxxychlor	72-43-5	<5
TOXAPHENE	8001-35-2	<200

13 of 27 pages

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-3)
Date received: 3/17/06	Laboratory ID: 1105107
Date extracted: 3/22/06	Matrix: Soil
Date analyzed: 3/22/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Michael Veraldi-Laboratory Director

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-2)
Date received: 3/17/06	Laboratory ID: 1105108
Date extracted: 3/20/06	Matrix: Soil
Date analyzed: 3/20/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<25
CHLOROMETHANE	74-87-3	5 ug/kg	<25
VINYL CHLORIDE	75-01-4	5 ug/kg	<25
BROMOMETHANE	74-83-9	5 ug/kg	<25
CHLOROETHANE	75-00-3	5 ug/kg	<25
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<25
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<25
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<25
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<25
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<25
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<25
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<25
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<25
CHLOROFORM	67-66-3	5 ug/kg	<25
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<25
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<25
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<25
BENZENE	71-43-2	5 ug/kg	<25
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<25
TRICHLOROETHENE	79-01-6	5 ug/kg	<25
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<25
DIBROMOMETHANE	74-95-3	5 ug/kg	<25
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<25
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<25
TOLUENE	108-88-3	5 ug/kg	<25
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<25
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<25
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<25
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<25
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<25
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<25
CHLOROBENZENE	108-90-7	5 ug/kg	28
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<25
ETHYLBENZENE	100-41-4	5 ug/kg	<25
STYRENE	100-42-5	5 ug/kg	<25
BROMOFORM ADL = Minimum Detection Limit	75-25-2	5 ug/kg	<25

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-2)
Date received: 3/17/06	Laboratory ID: 1105108
Date extracted: 3/20/06	Matrix: Soil
Date analyzed: 3/20/06	ELAP #: 11693

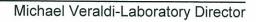
PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<25
BROMOBENZENE	108-86-1	5 ug/kg	<25
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<25
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<25
n-PROPYLBENZENE	103-65-1	5 ug/kg	<25
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<25
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<25
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<25
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<25
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<25
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<25
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<25
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<25
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<25
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<25
n-BUTYLBENZENE	104-51-8	5 ug/kg	<25
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<25
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<25
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<25
NAPHTHALENE	91-20-3	5 ug/kg	<25
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<25
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<25
FREON 113	76-13-1	5 ug/kg	<25
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<25
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<25
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<25
ACETONE	67-64-1	50 ug/kg	<250
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<25
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<50
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<25
p & m-XYLENE	1330-20-7	10 ug/kg	<50
o-XYLENE	1330-20-7	5 ug/kg	<25
MTBE	1634-04-4	5 ug/kg	<25

MDL = Minimum Detection Limit.

MDL's raised due to matrix interference.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director


Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-2)
Date received: 3/17/06	Laboratory ID: 1105108
Date extracted: 3/21/06	Matrix: Soil
Date analyzed: 3/21/06	ELAP #: 11693

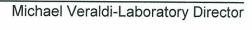
SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	100
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	42
Fluoranthene	206-44-0	40 ug/kg	110
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	91
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	76
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	44
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald



Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-2)
Date received: 3/17/06	Laboratory ID: 1105108
Date extracted: 3/21/06	Matrix: Soil
Date analyzed: 3/21/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	6.82
COPPER, Cu	1.65 mg/kg	99.9
MERCURY, Hg	0.020 mg/kg	0.067
NICKEL, Ni	1.65 mg/kg	4.02
LEAD, Pb	1.65 mg/kg	7.44

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Mishael Verald

Data File Name

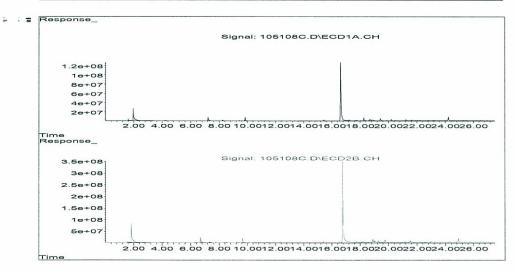
105108C.D

8080 15G/15ML

Operator

JZ

Date Acquired


22 Mar 2006 12:31

Vial Number

57

8080 ANALYSIS

PARAMETER	CAS NO.	RESULTS ug/kg
aldrin	309-00-2	<5
a-BHC	319-84-6	<5
b-BHC	319-85-7	<5
d-BHC	319-86-8	<5
r-BHC	58-89-9	<5
CHLORDANE	12789-03-6	<15
44-DDD	72-54-8	18.50
44-DDE	72-55-9	<5
44-DDT	50-29-3	<5
Dieldrin	60-57-1	<5
Endosulfant I	959-98-8	<5
Endosulfant II	33212-65-9	<5
Endosulfant sulfate	1031-07-8	<5
Endrin	72-20-8	<5
Endrin aldehyde	7421-93-4	<5
Endrin ketone	5394-70-5	<5
Hepatachlor	76-44-8	<5
Heptachlor epoxide	1024-57-3	<5
Methoxxychlor	72-43-5	<5
TOXAPHENE	8001-35-2	<200

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-1)
Date received: 3/17/06	Laboratory ID: 1105109
Date extracted: 3/22/06	Matrix: Soil
Date analyzed: 3/22/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	34
4,4'- DDD	72-54-8	5 ug/kg	14
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
ADI = Minimum Detection Limit	1	0 1 1 1	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

21 of 27 pages

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-1)
Date received: 3/17/06	Laboratory ID: 1105109
Date extracted: 3/22/06	Matrix: Soil
Date analyzed: 3/22/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-6)
Date received: 3/17/06	Laboratory ID: 1105110
Date extracted: 3/22/06	Matrix: Soil
Date analyzed: 3/22/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	<15
4,4'- DDD	72-54-8	5 ug/kg	12
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

23 of 27 pages

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-6)
Date received: 3/17/06	Laboratory ID: 1105110
Date extracted: 3/22/06	Matrix: Soil
Date analyzed: 3/22/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-4-GW-E)
Date received: 3/17/06	Laboratory ID: 1105111
Date extracted: 3/21/06	Matrix: Liquid
Date analyzed: 3/21/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/L
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	
CHLOROMETHANE	74-87-3	5 ug/L	<5	
VINYL CHLORIDE	75-01-4	5 ug/L	<5	
BROMOMETHANE	74-83-9	5 ug/L	<5	
CHLOROETHANE	75-00-3	5 ug/L	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5	
CHLOROFORM	67-66-3	5 ug/L	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5	
BENZENE	71-43-2	0.7 ug/L	<0.7	
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5	
TRICHLOROETHENE	79-01-6	5 ug/L	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5	
DIBROMOMETHANE	74-95-3	5 ug/L	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5	
TOLUENE	108-88-3	5 ug/L	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/L	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5	
CHLOROBENZENE	108-90-7	5 ug/L	7	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5	
ETHYLBENZENE	100-41-4	5 ug/L	<5	
STYRENE	100-42-5	5 ug/L	<5	
BROMOFORM	75-25-2	5 ug/L	<5	

MDL = Minimum Detection Limit.

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-4-GW-E)
Date received: 3/17/06	Laboratory ID: 1105111
Date extracted: 3/21/06	Matrix: Liquid
Date analyzed: 3/21/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5
BROMOBENZENE	108-86-1	5 ug/L	<5
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5
n-PROPYLBENZENE	103-65-1	5 ug/L	<5
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5
Tert-BUTYLBENZENE	98-06-6	5 ug/L	<5
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5
Sec-BUTYLBENZENE	135-98-8	5 ug/L	<5
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	10
n-BUTYLBENZENE	104-51-8	5 ug/L	<5
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5
NAPHTHALENE	91-20-3	5 ug/L	<5
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5
FREON 113	76-13-1	5 ug/L	<5
p-DIETHYLBENZENE	105-05-5	5 ug/L	<5
p-ETHYLTOLUENE	622-96-8	5 ug/L	<5
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/L	<5
ACETONE	67-64-1	50 ug/L	<50
CHLORODIFLUOROMETHANE	75-45-6	5 ug/L	<5
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5
p & m-XYLENES	1330-20-7	10 ug/kg	<10
o-XYLENE	1330-20-7	5 ug/kg	<5
MTBE	1634-04-4	5 ug/L	<5

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verald

Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course
	(S-4-GW-W)
Date received: 3/17/06	Laboratory ID: 1105112
Date extracted: 3/21/06	Matrix: Liquid
Date analyzed: 3/21/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/l
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5
CHLOROMETHANE	74-87-3	5 ug/L	<5
VINYL CHLORIDE	75-01-4	5 ug/L	<5
BROMOMETHANE	74-83-9	5 ug/L	<5
CHLOROETHANE	75-00-3	5 ug/L	<5
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5
CHLOROFORM	67-66-3	5 ug/L	<5
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5
BENZENE	71-43-2	0.7 ug/L	3.7
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5
TRICHLOROETHENE	79-01-6	5 ug/L	<5
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5
DIBROMOMETHANE	74-95-3	5 ug/L	<5
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5
TOLUENE	108-88-3	5 ug/L	23
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5
TETRACHLOROETHYLENE	127-18-4	5 ug/L	<5
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5
CHLOROBENZENE	108-90-7	5 ug/L	72
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5
ETHYLBENZENE	100-41-4	5 ug/L	<5
STYRENE	100-42-5	5 ug/L	<5
BROMOFORM	75-25-2	5 ug/L	<5

MDL = Minimum Detection Limit.

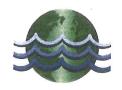
Client: P.W. Grosser Consulting	Client ID: Island Hills Golf Course (S-4-GW-W)
Date received: 3/17/06	Laboratory ID: 1105112
Date extracted: 3/21/06	Matrix: Liquid
Date analyzed: 3/21/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5
BROMOBENZENE	108-86-1	5 ug/L	<5
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5
n-PROPYLBENZENE	103-65-1	5 ug/L	<5
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5
Tert-BUTYLBENZENE	98-06-6	5 ug/L	<5
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5
Sec-BUTYLBENZENE	135-98-8	5 ug/L	<5
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	10
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	35
n-BUTYLBENZENE	104-51-8	5 ug/L	<5
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5
NAPHTHALENE	91-20-3	5 ug/L	<5
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5
FREON 113	76-13-1	5 ug/L	<5
p-DIETHYLBENZENE	105-05-5	5 ug/L	<5
p-ETHYLTOLUENE	622-96-8	5 ug/L	<5
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/L	<5
ACETONE	67-64-1	50 ug/L	58
CHLORODIFLUOROMETHANE	75-45-6	5 ug/L	<5
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5
p & m-XYLENES	1330-20-7	10 ug/kg	<10
o-XYLENE	1330-20-7	5 ug/kg	<5
MTBE	1634-04-4	5 ug/L	<5

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741 • Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com


ISLAND ANALYTICAL LABORATORIES INC.

OMORROWS ANALYTICAL SOLUTIONS TODAY"

FOR ANALYSIS DOCUMENT CHAIN OF CUSTODY / REQUEST

S-4-GW- E and S-4-GW-W & Hold Svoc, metals, Pest/HorB CONTAINERS Bused on Results WW M 002359 A AME DATE 3//7/04 PRINTED For Anysis CORRECT CONTAINER(S) SAMPLE(S) SEALED 157 YES / NO YES// NO TIME 2: × DAM DATES TIME 1 5-2, 5-8,5-9 人 X COMMENTS / INSTRUCTIONS 5-2,5-2,5-5 35 OBPINOSP SISY JAWA X TIMES Below × RECEIVED BY/(SIGNATURE) 20 1030 Run Vac an 3/11/66 SAMPLES RECEIVED AT 0 Port X °C 0460 000 0501 1230 300 1200 1120 0 15 0 TURNAROUND REQUIRED: 3 (e) LOCATION SAMPLE # . 0 Jin Millson 6 0 コードーイアード SAMPLER NAME (PRINT) 0 SAMPLER (SIGNATURE) 0 3 **TERMS & CONDITIONS:** Accounts are payable in full within thirty days, outstanding balances accrue service charges of 1.5% per month. □ NORMAL 00 5-0 J 1 DoVant PHONE (31) 589-6253 3018 5-41/116 RES. CHLORINE PPM PRINTED NAME PRINTED NAME FAX:631 5P9-A=AIR; W=WIPE; PC=PAINT CHIPS; BM= BULK MATERIAL, O=OIL G=GRAB; C=COMPOSITE; SS=SPLIT SPOON MATRIX: S=SOIL; SL=SLUDGE; L=LIQUID; DW=DRINKING WATER; CONTACT: Bryan Laklane Ave PH PRES. DATE 3/17/1 江后 TIME JO ICE, HCL, H2SO4, NAOH, NA2S3O3 DATE TIME ISland Hills Golf Course MATRIX TYPE 5 5 S 5 S 3 3 P P 630 Johnson Auc Sult RELANGUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) 3 3 CLIENT NAME/ADDRESS PROJECT LOCATION: LABORATORY Mille ***** Sent 1 TYPE: PRES: 10 14 12 13 4 10

USEPA# NY01273 AIHA# 164456 CTDOH# PH-0284 WHITE - OFFICE / CANARY - LAB / PINK - SAMPLE CUSTODIAN / GOLDENROD - CLIENT NYSDOH ELAP# (1693 P.W. GROSSER CONSULTING, INC

P.W. GROSSER

CONSULTING ENGINEERS & HYDROGEOLOGIST, PC June 30, 2006

Mr. Luigi Salcedo R Squared LLC 555 Madison Ave, 12th Floor New York, NY 10022

Re:

Phase I Environmental Site Assessment Island Hills Golf Club, Sayville, New York

Dear Mr. Salcedo:

630 JOHNSON AVENUE SUITE 7

BOHEMIA

NEW YORK

11716-2618

PHONE: 631-589-6353

FAX:

631-589-8705

VISIT US AT:

www.pwgrosser.com

P.W. Grosser Consulting, Inc. (PWGC) is pleased to submit for your use two copies of our Phase I Environmental Site Assessment report for the subject property (Parcels 4, 6, 7, and 8) which consists of approximately a 113 acre golf course. It was determined from the site inspection, records review and interviews that there are recognized environmental conditions with regard to the subject site. Recognized environmental conditions are those conditions which could adversely affect the environmental integrity of the property. These conditions are summarized below and on the attached table.

Due to the age of the buildings, it is likely that potential asbestos containing material is present within the buildings. Materials which are in good condition and are not likely to release fibers may remain. Friable and damaged materials should be removed.

As with asbestos, since the buildings were built before the 1978 ban of lead based paint, it is likely that lead based paint is present in the buildings. PWGC observed some peeling paint in the Central Maintenance Building and Pool House. If peeling paint if found within the building, it should be properly removed or repaired.

Mold was identified in two buildings, the Club House and the Pool House. Molds are a class of fungi and have been found to cause a variety of health problems in humans, including allergic, toxicological, and infectious responses. Water damaged drywall and potential mold growth in a storage room located between the kitchen and the catering hall was noted during the inspection. The source of the water damage is likely a roof leak. PWGC recommends repair of the roof leak and removal of the suspected mold damaged materials. There was significant mold growth observed in the bathroom and snack bar areas of the pool house. The Pool House building is in severe disrepair with several water leaks.

Please do not hesitate to contact me if you have any questions or require additional information.

Very truly yours,

P.W. Grosser Consulting, Inc.

Bryan A Devaux Project Manager

- Bryan a

Lisa Santoro Vice-President

Area	REC No.	REC	Comments/Recommendation
Club House Building	01	Sanitary Systems-3	Sample each system primary structure due to age of golf course (1927), potential pesticide herbicide usage and sample results from other sanitary system.
Club House Vicinity	02	Oil Stained Pad & Transformer	Since staining trended off pad to soil, evaluate soil for PCB contamination.
Pro-Shop Building	03	AST Staged on Soil	Fuel oil AST not installed to code and staged on soil. Evaluate soil for petroleum impact.
	04	Sanitary System(s)	Due to the sanitary vent interior to the building, a second system may be associated with the building. Investigate line to determine discharge point. As with REC No. 1, sample each system primary.
	05	UST	A suspected UST fuel oil vent is located inside the building. Locate UST and determine if removed or properly abandoned and evaluate soil as necessary.
Green	06	Storm Drains-2	Two storm drains located at low point on course, potential for accumulation of contaminants. Sample each structure.
	07	Landscape Debris & Waste Drums Area of Holes 1 & 2	Drums in various stages of decay, some with standing liquid that are improperly stored. Evaluate soils in area.
	80	Landscape Debris Piles Holes 13 & 16	Landscape debris stockpiled, evaluate soil.
Central Maintenance Building	09	Sanitary System	Building used for storage of sprinkler supplies and bathrooms are present. As with REC No. 1, sample each primary structure.
S. Maintenance Building	10	Maintenance Pit	Maintenance pit inside building used for repairs of equipment. Evaluate if pit has the potential to impact soil and sample as necessary.
	11	Sanitary System & Slop Sink	Slop sink had evidence of staining and discharges to sanitary system and paint thinner usage evident. Sample associated leaching systems.
	12	Storm Drains-2	Storm drains located outside bay doors, Chemical Storage Trailer adjacent to this area. Sample each structure.
	13	Gasoline UST	UST is out of registration since 1991. Perform tightness testing and register. A former UST was removed in 1991, no information as to condition or sample results. Evaluate soil in vicinity of current UST.
	14	Chemical Storage Trailer	Various chemicals stored in trailer that is staged on soil, there is potential for mixing of chemicals and surface spills. Evaluate soil surrounding trailer.
Pool House	15	Sanitary System	Building used for storage currently. As with REC No. 1, sample primary leaching structure.
General Conditions	16	Surface Soil	Due to the age of the golf course and the usage of pesticides and herbicides, evaluation of soils around the course is recommended.
	17	Groundwater	Since the Suffolk County Department of Health Services periodically monitors groundwater quality around golf courses, it is recommended that quality be evaluated.

CONTENTS

-		Page
LE	ITER OF TRANSMITTAL	ES-1
1.0	INTRODUCTION	1
	1.1 Objectives	1
2.0	SITE OVERVIEW	4
	2.1 Location	4 4 4
3.0	HISTORICAL INFORMATION	5
	3.1 Site History	5
4.0	ENVIRONMENTAL SETTING	7
	4.1 Regional Physiographic Conditions 4.1.1 Flood Potential 4.1.2 Direction and Distance to Nearest Surface Water 4.1.3 Wetland Delineation 4.2 Regional Geology 4.3 Soil Characteristics 4.4 Groundwater Characteristics 4.5 Radon Risk Evaluation	
5.0	SITE INSPECTION OBSERVATIONS	
	5.1 Site Observations and Inquiries 5.1.1 Date and Time of Inspection 5.1.2 Individuals Conducting the Phase I Site Inspection 5.1.3 Site Representatives Present During the Inspection 5.1.4 Inspection Process 5.1.5 Surface Access and Egress 5.1.6 Variations in Surface Vegetation 5.1.7 Water Bodies 5.1.8 Railroad Spurs and Electrical Transmission Lines 5.2 Water Supply and Wastewater Disposal 5.3 Storm Water Disposal 5.4 Aboveground Storage Tanks	
	5.5 Underground Storage Tanks 5.6 Hazardous and Non-Hazardous Waste Storage and Disposal	12

CONTENTS (Continued)

 5.7 Radioactive Materials 5.8 Landfills, Dumps, or Direct Burial Activities 5.9 Polychlorinated Biphenyls (PCBs) 5.10 Air Emissions 5.11 Asbestos 5.12 Lead-Based Paint (LBP) 5.13 Mold 	1! 1! 10
6.0 REGULATORY AGENCY REVIEW	18
6.1 Regulatory Database Search/Review 6.1.1 Federal Databases 6.1.2 New York State Databases 6.1.3 EDR and Brownfield Databases 6.2 Freedom of Information Act (FOIA) Requests	18
7.0 PHASE I FINDINGS	26

FIGURES

<u>No.</u>	Description
1	Vicinity Map
2	Site Plan

APPENDICES

APPENDIX A - SITE PHOTOGRAPHS

APPENDIX B - HISTORIC TOPOGRAPHIC MAPS

APPENDIX C - HISTORIC AERIAL PHOTOS

APPENDIX D - PREVIOUS ENVIRONMENTAL REPORTS

APPENDIX E - EDR RADIUS MAP REPORT

APPENDIX F - FREEDOM OF INFORMATION ACT REQUESTS

1.0 INTRODUCTION

1.1 Objectives

R Squared LLC retained P.W. Grosser Consulting, Inc. (PWGC) to conduct a Phase I Environmental Site Assessment (ESA) of Island Hills Golf Club located at 458 Lakeland Avenue, Sayville, New York (Parcels 4, 6, 7 and 8). A separate ESA was performed for Parcels 1 and 2, which was primarily the parking lot for the golf course Club House and two residential dwellings. The site location is shown on Figure 1. The purpose of the Phase I ESA was to identify and evaluate the presence of recognized environmental conditions at the subject site. The work was conducted in accordance with the American Society for Testing and Materials (ASTM) Standard E 1527-00 (Standard Practices for Environmental Site Assessment: Phase I Environmental Site Assessment Process) and PWGC's proposal for services.

1.2 Methodology

The assessment consisted of a visual inspection of the site and surrounding areas, interviews, a review of historical information and aerial photographs, and a review of pertinent local, state, federal and facility records. Mr. Bryan A Devaux of PWGC inspected the site on April 10th and 11th, 2006. Environmental Data Resources (EDR) of Southport, Connecticut provided the following: a computerized database search of environmental compliance records of sites within an ASTM standard radius of the property, a Sanborn fire insurance map search, and historical aerial photograph search.

PWGC reviewed the environmental database report compiled by EDR as part of the assessment. The purpose of the review was to identify reported listings for the subject property or other properties in the site vicinity. Databases reviewed included federal and state lists of known or suspected contaminated sites, lists of known handlers or generators of hazardous waste, lists of known waste disposal facilities, and lists of aboveground and underground storage tanks (ASTs and USTs). PWGC's review of the database report has been incorporated into this report along with a copy of the EDR report.

1.3 Limitations

The conclusions presented in this report are professional opinions based upon the information described in this report. These opinions have been arrived at in accordance with currently accepted engineering and

hydrogeologic standards and practices applicable to this location, and are subject to the following inherent limitations:

- The data presented in this report are from visual inspections, examination of records in the public domain, and interviews with individuals having information about the site. The passage of time, manifestation of latent conditions, or occurrence of future events may require further exploration of the site, analysis of data, and re-evaluation of the findings, observations, and conclusions presented in this report.
- 2. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. The scope of work was defined by the request of the client.
- 3. No warranty or guarantee, whether expressed or implied, is made with respect to the data reported, findings, observations, or conclusions. These are based solely upon site conditions in existence at the time of the investigation, and other information obtained and reviewed by PWGC.
- 4. PWGC's Phase I ESA report presents professional opinions and findings of a scientific and technical nature. While attempts were made to relate the data and findings to applicable environmental laws and regulations, the report shall not be construed to offer legal opinion or representations as to the requirements of, nor compliance with, environmental laws, rules, or regulations, or policies of federal, state, or local government agencies. PWGC does not assume liability for financial or other losses or subsequent damage caused by or related to any use of this document.
- 5. The conclusions presented in this report are professional opinions based on data described in this report. They are intended only for the purpose, site location, and project indicated. This report is not a definitive study of contamination at the site and should not be interpreted as such.
- 6. This report is based, in part, on information supplied to PWGC by third-party sources. While efforts have been made to substantiate this third-party information, PWGC cannot attest to the completeness or accuracy of information provided by others.

7. This report was prepared for the exclusive use of R Squared LLC. PWGC assumes no liability for use of this report by any person or entity other than the client for which it was prepared.

2.0 SITE OVERVIEW

2.1 Location

The subject property is known as Island Hills Golf Club located at 458 Lakeland Avenue, Sayville, New York. The site is located in the Town of Islip and in Suffolk County. Figure 1 illustrates the site location on the United States Geological Survey (USGS) 7.5-minute series topographic map for the Patchogue, New York quadrangle.

2.2 Site Description

The property is approximately 113 acres in size. The subject area consists of an 18-hole golf course and various buildings such as: a Club House, Pool House, Pro-Shop building, Pump House and two maintenance / bathroom buildings (Southern and Central). A paved area for the Pool House parking is located on the north side of the site. The Club House parking lot ESA was performed and documented separately for Parcels 1 and 2. Photos of the site are included in Appendix A and a site plan is shown on Figure 2.

2.3 Adjoining/Surrounding Properties

The general area is comprised of mainly residential properties. A summary of the surrounding properties is as follows:

North	Vacant lots and residential homes
South	Residential Homes
East	Residential Homes
West	Residential Homes

3.0 HISTORICAL INFORMATION

3.1 Site History

Based upon PWGC's conversation with representatives from the Island Hills Golf Club the property has been developed as a golf course since 1927. The current pool house was the original club rental / caddy building. Briefly during World War II, the golf course was shut down and the property was used as a paratrooper training landing zone. Following World War II, the property was again operated as a golf course. There is no information available regarding the use of the property prior to 1927.

3.2 Sanborn Map Review

Environmental Data Resources (EDR) was retained to provide historical Sanborn fire insurance maps of the subject and adjacent properties. Based upon the information provided to PWGC by EDR, there is no Sanborn Map coverage for the site area. A review of the historic topographic maps for the site dating back to 1904 showed no significant changes in site topography. Copies of the topographic Maps are included in Appendix B.

3.3 Aerial Photograph Review

PWGC performed a review of readily available aerial photographs showing the subject and surrounding properties. Photographs from 1954, 1966, 1976, 1980 and 1994 were reviewed. The review is summarized as follows:

1954	The Island Hills Golf Club golf course is present. The clubhouse building appears smaller than the current structure. The current parking lot area appears to be wooded in 1954.
1966	The area appears quite similar to the current conditions with the larger clubhouse building. The parking lot appears to be cleared.
1976, 1980 & 1994 The area appears quite similar to the current conditions.	

A copy of the aerial photograph search is included in Appendix C.

3.4 Previous Environmental Reports

PWGC obtained a one page fax from the Suffolk County Department of Health Services (SCDHS) pertaining to the Island Hills Golf Club. According to their records, a groundwater monitoring well was installed at the property as part of the County's Pesticide / Herbicide monitoring program. The fax included tabulated well results from the monitoring well sampled on February 7, 2002. The information obtained from the Health Department does not indicate the well location. Based upon and review of the laboratory results, it appears that the groundwater obtained from the well was within groundwater standards for each of the sampled parameters. No evidence of this well was observed during the site inspection. John Genovesi, the golf course superintendent, was not aware their being any SCDHS monitoring wells on the site. He also indicated that the SCDHS has confused Island Hills Golf Club with other similarly named golf courses in the past, and that the results may be from another golf course. A copy of the table is included in Appendix D.

4.0 ENVIRONMENTAL SETTING

4.1 Regional Physiographic Conditions

The topography of the site and surrounding area was reviewed from the USGS 7.5-minute series topographic map for the Patchogue, New York quadrangle. The subject property has an elevation of approximately 18 feet above the National Geodetic Vertical Datum (NGVD). The property and surrounding areas are relatively flat with some hills typical of golf courses.

4.1.1 Flood Potential

PWGC reviewed the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs) to determine if the subject property is located within the 100-year or 500-year flood zones. The FIRM showing the property (No. 36103C0688G) indicates that the entire property is located outside the 100-year and 500-year flood zones. This indicates that there is a minimal risk of flooding at the subject property.

4.1.2 Direction and Distance to Nearest Surface Water

The nearest natural surface water body is Green Creek located approximately 2,000 feet south-southeast of the property.

4.1.3 Wetland Delineation

A review of the NYSDEC Freshwater Wetland Map, Patchogue Quadrangle, indicates that freshwater wetlands are located approximately ½ mile south of the subject property and associated with the headwaters of Green Creek.

4.2 Regional Geology

The geologic setting of Long Island is well documented and consists of crystalline bedrock composed of schist and gneiss overlain by layers of unconsolidated deposits. At the subject property, bedrock occurs at an approximate depth of 1700 feet below land surface. (Suter, W De Laguna, N Perlmutter, 1949).

Immediately overlying the bedrock is the Raritan Formation, consisting of the Lloyd sand confined by the Raritan Clay Member. The Lloyd sand is an aquifer and consists of discontinuous layers of gravel, sand,

sandy and silty clay, and solid clay. The depth to the top of the Lloyd at the site is approximately 1300 feet below land surface and the aquifer is approximately 300 feet thick. The Raritan clay occurs at approximately 950 feet below grade. The average thickness of the Raritan clay in the vicinity of the site is 350 feet. The Raritan clay is relatively impermeable, and effectively hydraulically isolates the Lloyd Aquifer from overlying aquifers. The Raritan Clay is a solid and silty clay with: few lenses of sand and gravel; abundant lignite and pyrite; and gray, red or white in color.

Above the Raritan Clay lies the Magothy Formation, which is a prolific aquifer. The Magothy Aquifer consists of layers of fine to coarse sand of moderate to high permeability, with interbedded lenses of silt and clay of low permeability resulting in areas of preferential horizontal flow. Therefore, this aquifer generally becomes more confined with depth. The depth to the top of the Magothy is approximately 90 feet below land surface and is estimated to be 860 feet thick in the area of the subject property.

The Magothy Aquifer is overlain by the Upper Glacial Aquifer. The Upper Glacial Aquifer is the water table aquifer at this location and is comprised of medium to coarse sand and gravel with occasional thin lenses of fine sand and brown clay. This aquifer extends from the land surface to the top of the Magothy and, therefore, is hydraulically connected to the Magothy Aquifer.

4.3 Soil Characteristics

Soils at the site are classified by the United States Department of Agriculture's Soil Conservation Service as Riverhead Soils, which are defined as sandy loams with moderate infiltration rates. Soils are deep, moderately well drained to well drained sands with high hydraulic conductivity and low water holding capacity. Additional information regarding the soil classification is also included in the EDR report (Appendix E, Page A-4).

4.4 Groundwater Characteristics

Based upon Suffolk County Department of Health Service (SCDHS) groundwater elevation maps and the site topography, PWGC estimates groundwater to be approximately 10 feet below grade. The regional groundwater flow direction is to the south. No public supply wells were identified within a one mile radius of the subject property.

4.5 Radon Risk Evaluation

Radon is a colorless, radioactive; inert gas formed by the decay of radium and may be present in soils and rocks containing granite, shale, phosphate and pitchblende. USEPA's "Map of Radon Zones for New York State," September 1993 indicates that the Sayville area is not a radon risk area. The EDR report provides information from the New York State Department of Health radon survey which indicates that 98% of those sites tested in Suffolk County were below the United States Environmental Protection Agency (USEPA) radon action level of 4 Pico curies per liter (pCi/L).

5.0 SITE INSPECTION OBSERVATIONS

5.1 Site Observations and Inquiries

Observations made during the site inspection are presented below.

5.1.1 Date and Time of Inspection

PWGC performed the site inspection on April 10th and 11th 2006 beginning at 10:00 A.M. Weather conditions during the inspection were sunny, with a temperature of approximately 60° Fahrenheit.

5.1.2 Individuals Conducting the Phase I Site Inspection

Mr. Bryan Devaux conducted the site inspection. Mr. Devaux is an experienced professional in the field of environmental compliance, Phase I and II environmental site assessments and related environmental investigations.

5.1.3 Site Representatives Present During the Inspection

Mr. John Genovesi, the golf course superintendent, was available for questioning during the inspection of the course property. PWGC also met with another golf course operations representative to gain access to the pool house and the basement beneath the northern section of the clubhouse.

5.1.4 Inspection Process

The site inspection consisted of an inspection of key site locations, such as buildings and maintenance areas, followed by a walkthrough of the site.

5.1.5 Surface Access and Egress

The site is located on the west side of Lakeland Avenue. Public access to the property is via Lakeland Avenue. Additional overflow parking is present at the intersection of Eleventh Avenue and Lakeland Avenue. Access to the south maintenance is made by way of Bohemia Parkway.

5.1.6 Variations in Surface Vegetation

The site predominately consists of the course area. No signs of stressed vegetation were observed.

5.1.7 Water Bodies

Two ponds are present on the 18th hole of the course, adjacent to the driving range. Both lakes are rather small (< 0.25 acre each). The ponds are man made and have an impermeable barrier at the base to prevent infiltration.

5.1.8 Railroad Spurs and Electrical Transmission Lines

No rail lines are present on or in the vicinity of the site. Electric lines run above ground along Lakeland Avenue as well as the other surrounding roads. At several locations through the center of the course, running in a north south direction, PWGC observed several above small utility junction boxes. Based upon the warnings on the boxes, it appears they are related to an underground electric line which runs beneath the course.

5.2 Water Supply and Wastewater Disposal

Drinking water is supplied to the property by the Suffolk County Water Authority. An irrigation well and pump house is present on the western side of the property to provide irrigation water to the course. Several sanitary waste water systems were observed on the property. A summary of those systems is as follows:

- Club House PWGC noted three sanitary systems that are located on the north side of the building and are related to the bar/restaurant, the men's locker room and the woman's locker room. During the ESA for Parcels 1 and 2, PWGC noted two onsite sanitary systems in the main parking lot area, on the east side of the Club House building. A Phase II investigation was performed relative to sanitary structures located in the parking lot and is documented by PW Grosser Consulting, Inc. in a phase II report dated April 6, 2006.
- Pro-Shop PWGC observed two manhole covers south of the building and are believed to be related
 to the Pro-Shop's sanitary system. During the inspection of the building, PWGC observed a sanitary
 vent in the center of the building. Due to the distance between this vent and the suspected sanitary

system south of the building, it is possible that an additional sanitary system is associated with the Pro-Shop.

- South Maintenance Building An employee bathroom, slop sink, and public bathroom are present in
 this building. Signs of improper disposal of chemicals were evident in the slop sink. Discharges from
 this building are to a sanitary system reported to be located south of the building. No covers were
 observed at grade.
- Central Maintenance Building This building contained storage areas for sprinkler equipment and two public bathrooms. The bathrooms discharged to a sanitary system located northeast of the building. One sanitary cover was observed at grade.
- Pool House PWGC observed a potential sanitary system cover on the north side of the Pool House.

Sanitary structures that discharge directly to subsurface soils pose a potential environmental concern because they provide a pathway for impacts to the subsurface, and are classified as Class V injection wells under the USEPA's Underground Injection Control (UIC) program and are over seen locally by the SCDHS. Due to the potential for these structures to become impacted, PWGC recommends sampling the primary leaching structure of each of the seven systems for the parameters specified in SOP 9-95 of Article 12 of the SCDHS sanitary code. PWGC also recommends that the Pro-shop be further inspected to determine if additional sanitary structures are present relative to the vent noted inside the building.

In the garage building, PWGC observed a maintenance pit in the south garage bay. Such pits can act as a conduit for impact to reach the subsurface if they do not have a sealed base. According to the course superintendent, the structure was sealed several years ago. PWGC recommends inspecting the structure and collecting samples if the inspection indicates that the pit had the potential to impact the sub surface.

5.3 Storm Water Disposal

Storm drains and floor drains that discharge directly to subsurface soils pose a potential environmental concern because they provide a pathway for impacts to the subsurface. These structures are classified as Class V injection wells under the USEPA's Underground Injection Control (UIC) program.

Stormwater discharges from the main and Pool House parking lots are handled by several stormdrains and associated overflow pools located within the parking lot. No signs of staining or impact were observed in the vicinity of the drains.

PWGC observed two stormdrains in the vicinity of the south maintenance building. Due to the nearby storage of petroleum products, pesticides and herbicides, PWGC recommends sampling of these structures as per SOP 9-95.

PWGC also observed two stormdrains within the golf course area. Since these two stormdrains represent low points in the course where contaminants may have accumulated, PWGC recommends sampling of these structures. Stormwater discharge on the remainder of the property is handled by infiltration.

5.4 Aboveground Storage Tanks

PWGC observed two Aboveground Storage Tanks (ASTs) at the subject property. One tank is a 300 gallon diesel tank and is located in the south maintenance area. The tank is contained within a secondary containment structure and no signs of leaks were observed. The second tank is located to the east of the Pro-Shop. The tank was sitting directly on soil. The tank is 550 gallons in size and contains fuel oil. No signs of leaks were observed in the vicinity of the tank. Since the tank was sitting directly on soil, PWGC recommends collection of a soil sample from beneath the tank.

5.5 Underground Storage Tanks

PWGC observed the vent and fill of an Underground Storage Tank (UST) in the south maintenance area. The vent and fill are associated with a 1,000-gallon gasoline tank. Records indicate that the UST is constructed of fiberglass and the registration has expired, indicating the tank is out of compliance with the SCDHS.

During the inspection of the Pro-Shop, PWGC observed a pipe on the west side of the building which could potentially be associated with a tank fill. PWGC also observed a pipe which appeared to be a typical fuel oil UST vent inside the Pro-Shop. PWGC recommends tracing the lines and perform a magnetometer survey in the vicinity of the tanks in order to determine if a tank is present in the vicinity of the Pro-shop.

5.6 Hazardous and Non-Hazardous Waste Storage and Disposal

PWGC observed some chemical storage at various locations throughout the property. A summary of the findings by location follows:

- Club House PWGC observed some typical household cleaning products in various storage areas throughout the building. PWGC also observed several containers of acid based degreasers in the kitchen.
- South Maintenance Building Most of the chemical storage for the golf course was in this area. In the south maintenance building, PWGC observed storage of petroleum products including drums of motor oil, and lubrication oil, and 5-gallon pails of waste oil. According to John Genovesi, the waste oil is taken to a disposal facility, but he was unable to provide the name of the facility at the time of the inspection. PWGC also observed a parts washer within the garage. The parts washer was maintained by Safety-Kleen. Waste manifests were not provided to PWGC. PWGC also observed smaller quantities of other chemicals such as paint and paint thinner in the building. A 200 gallon disposable poly tank of liquid fertilizer was also present in the maintenance building.
- South Maintenance Chemical Storage Trailer The course maintenance chemicals are stored in a
 dedicated locked storage trailer located to the north of the South Maintenance Building. The trailer is
 staged on soil and is located at the edge of a concrete slab. At the time of the inspection PWGC
 observed the following products in the trailer:

Product	Use
Primo Maxx	Plant Growth Regulator
Banner Maxx	Fungicide
Micro CaSO ₄	Gypsum Fertilizer
Embark	Plant Growth Regulator
Merit 75 WSP	Insecticide
Bayleton 50 WSP	Fungicide
Compass	Fungicide
Azoxystrobin	Fungicide
Daconil Ultrex	Fungicide
26 GT	Fungicide
Barricade .29	Fertilizer / Pre-emergent weed presenter
Touché EG	Fungicide

 Pool House – PWGC observed eight five gallon pails of pool chlorine in the pump room of the building. There was no evidence of spills from the containers.

Additional products may be used at the site on a seasonal basis and were not present at the time of the inspection. PWGC was not given access to the site Material Safety Data Sheets (MSDS) book for the site which should contain MSDS forms for all the products used at the site. Due to the proximity of exposed soils in the vicinity of the storage trailer, PWGC recommends collection of a surface soil sample from this location.

5.7 Radioactive Materials

No obvious radioactive materials (labeled containers or equipment) were observed on the property or in the building at the time of the site visit.

5.8 Landfills, Dumps, or Direct Burial Activities

In the course of the inspection, PWGC observed a debris area in a wooded section of the course in the vicinity of Holes 1 and 2. Further inspection of the debris revealed the remains of several metal 55 gallon drums. Most of the drums were in poor condition and were no longer capable of holding liquids. One of the drums had been tipped over on its side and it was half full of liquid. A plastic 55 gallon drum was also located in the area. This drum was nearly full of an unknown liquid. None of the drums were labeled so PWGC was unable to determine the contents of the drums. PWGC recommends collecting samples from the general area in order to determine if the drums have impacted the surrounding soils.

In the vicinity of Holes 13 and 16, PWGC observed a soil and landscaping debris area. PWGC observed two debris piles which were approximately 200-300 yards in size. PWGC recommends collection of a sample in the vicinity of these piles in order to determine whether illegal dumping has occurred in this area.

5.9 Polychlorinated Biphenyls (PCBs)

PWGC observed a large transformer south of the clubhouse building. Typically, such transformers are owned by the Long Island Power Authority (LIPA). According to information provided by LIPA, all of their transformers have been upgraded and no longer contain PCBs. PWGC did find evidence of staining on the

concrete pad and the surrounding soils adjacent the transformer. PWGC recommends sampling the stained soil for PCBs.

5.10 Air Emissions

There was no evidence of air emissions on the subject property.

5.11 Asbestos

PWGC observed no friable asbestos material in any of the buildings. Due to the age of the buildings, it is likely that potential asbestos containing material (PACM) is present within the buildings. Materials which are in good condition and are not likely to release fibers may remain. Friable and damaged materials should be removed.

Thermal insulation, surfacing materials, and vinyl/asphalt floor materials installed before 1981 are presumed to contain asbestos. Should future plans for the property include demolition of the existing structures, removal of asbestos containing material may be required prior to demolition.

5.12 Lead-Based Paint (LBP)

The Consumer Product Safety Commission banned the manufacture of lead based paint for residential and commercial applications in 1978. Federal regulations enforced the ban in 1993. Since the buildings were built before the 1978 ban went into effect, it is likely that lead based paint is present in the buildings. PWGC observed some peeling paint in the Central Maintenance Building and Pool House. If peeling paint if found within the building, it should be properly removed or repaired.

5.13 Mold

As part of the assessment, PWGC performed a limited visual inspection for the presence of mold. A class of fungi, molds have been found to cause a variety of health problems in humans, including allergic, toxicological, and infectious responses. Molds are decomposers of organic material, and thrive in humid environments. Molds produce spores to reproduce, just as plants produce seeds. When mold spores land in a damp location indoors, they may begin growing and digesting whatever they are growing on to survive. When excess moisture or water accumulates indoors, mold growth will often occur, particularly if the moisture

problem remains undiscovered or unaddressed. As such, interior areas of buildings characterized by poor ventilation and high humidity are the most common locations for mold growth. Building materials including drywall, wallpaper, baseboards, wood framing, insulation, and carpeting often play host to such growth. Moisture control is the key to mold control. Mold needs both food and water to survive; since mold can digest most things, water is the factor that limits mold growth.

The EPA recommends the following action to prevent the amplification of mold growth in buildings.

- Fix leaky plumbing and leaks in the building envelope as soon as possible.
- Watch for condensation and wet spots. Fix sources of moisture as soon as possible.
- Keep heating, ventilation and air conditioning (HVAC) drip pans clean, flowing properly and unobstructed.
- Vent moisture generating appliances, such as dryers outside when possible.
- Maintain low indoor humidity, below 60% when possible.
- Perform regular building / HVAC inspections.
- Clean and dry wet or damp spots within 48 hours.
- Don't let foundations stay wet, provide drainage and slope ground away from the foundation.

The site inspection revealed the presence of mold in two locations:

- Club House PWGC observed some water damaged drywall and potential mold growth in a storage room located between the kitchen and the catering hall. The source of the water damage is likely a roof leak. PWGC recommends repair of the roof leak and removal of the suspected mold damaged materials.
- Pool House Significant mold growth was observed in the bathroom and snack bar areas of the pool house. This building is in severe disrepair with several water leaks. Due to the condition of the building it is no longer occupied and is only used to store the poolside chairs. PWGC recommends that the roof leaks be repaired and mold damaged building materials be removed or repaired if future plans for the property include repair of the pool house bathrooms and snack bar.

6.0 REGULATORY AGENCY REVIEW

6.1 Regulatory Database Search/Review

Environmental Data Resources (EDR) of Southport, Connecticut was retained to provide a computerized database search of the project area within an ASTM-standard radius of the subject property. A list of the databases searched and the search radius is shown on the summary table below. PWGC reviewed the database output to determine if the property appears on any of the regulatory agency lists. Detailed information concerning each database list is provided in the EDR report (Appendix C).

6.1.1 Federal Databases

The table below summarizes the Federal databases that were searched.

Agency	Listing Name or Database Searched	Abbreviatio n	Search Distance
USEPA	National Priorities List Report	NPL	1.0 mile
USEPA	Comprehensive Environmental Response Compensation and Liability Act Registry	CERCLIS	0.5 mile
USEPA	Resource Conservation and Recovery Act Treatment/Storage/Disposal Facilities	RCRIS TSD	0.5 mile
USEPA	Resource Conservation and Recovery Act Small/Large Quantity Hazardous Waste Generators	RCRIS SQG/LQG	0.25 mile
USEPA	Corrective Action Reports	CORRACTS	0.5 mile
USEPA	Facility Index System Database	FINDS	0.5 mile
USEPA	Emergency Response Notification System	ERNS	Target Site
USEPA	Superfund (CERCLA) Consent Decrees	CONSENT	1.0 mile
USEPA	Records of Decision	ROD	1.0 mile
USEPA	Mines Master Index	MINES	0.25 mile

National Priority List

The National Priority List (NPL) is the Environmental Protection Agency (EPA) database of uncontrolled or abandoned hazardous waste sites identified for priority remedial actions under the federal Superfund Program.

Neither the subject property nor any property within 1 mile of the subject property is listed as a NPL facility.

CERCLIS

The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) list is a compilation of sites that the EPA has investigated or is currently investigating for a release or threatened release of hazardous substances.

Neither the subject property nor any property within $\frac{1}{2}$ mile of the subject property is listed as a CERCLIS facility.

RCRA Treatment, Storage and Disposal

The EPA Resource Conservation and Recovery Act (RCRA) program identifies and tracks hazardous waste from the point of generation to the point of disposal. The RCRA Treatment, Storage and Disposal (TSD) database is a compilation of reporting facilities that treat, store or dispose of hazardous waste.

Neither the subject property nor any property within $\frac{1}{2}$ mile of the subject property is listed as a RCRA TSD site.

RCRA Generators

The RCRA Generators database is a compilation of reporting facilities that generate hazardous waste. A Small Quantity Generator (SQG) is a site which generates more than 100 and less than 1,000 kg of hazardous waste during any one calendar month and accumulates less than 6,000 kg of hazardous waste at any time; or a site which generates less than 100 kg of hazardous waste during any one calendar month and accumulates less than 1,000 kg of hazardous waste at any time. Large Quantity Generators (LQG) are those facilities that generate more that 1,000 kg of hazardous waste per month.

Neither the subject property nor any property within ¼ mile of the subject property is listed as a RCRA SQG or RCRA LQG site.

RCRA CORRACTS

The RCRA Corrective Actions (CORRACTS) database is the EPA's list of hazardous waste treatment, storage or disposal facilities subject to corrective action under RCRA.

Neither the subject property nor any property within $\frac{1}{2}$ mile of the subject property is listed as a RCRA CORRACTS site.

Emergency Response Notification System

The Emergency Response Notification System (ERNS) is a national database used to collect information on reported releases of oil or hazardous substances.

No ERNS incidents were listed for the subject property.

Superfund Consent Decrees

The Superfund Consent Decrees (CONSENT) list identifies major legal settlements that establish responsibility and standards for cleanup at NPL sites.

Neither the subject property nor any property within one mile of the subject property is identified on the CONSENT list.

Records of Decision

Record of Decision (ROD) documents mandate a permanent remedy at an NPL site containing technical and health information to aid in the cleanup.

Neither the subject property nor any property within one mile of the subject property is identified in the ROD database.

Master Mines Index

The Master Mines Index (MINES) file contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Neither the subject property nor any property within ¼ mile of the subject property is listed in the MINES database.

6.1.2 New York State Databases

The table below summarizes the State databases that were searched

Agen cy	Listing Name or Database Searched	Abbreviat ion	Search Distance
NYS DEC	Inactive Hazardous Waste Disposal Sites in New York State	SHWS	1.0 mile
NYS DEC	Solid Waste Facility Register	SWF	0.5 mile
NYS DEC	Leaking Underground Storage Tank Sites	LTANKS	0.5 mile
NYS DEC	Petroleum Bulk Storage (PBS) - Underground Tanks	UST	0.25 mile
NYS DEC	Chemical Bulk Storage	CBS	0.25 mile
NYS DEC	Major Oil Storage Facilities	MOSF	0.5 mile
NYS DEC	Voluntary Cleanup Agreements	VCP	0.5 mile
NYS DEC	Registered Recycling Facilities	SWRCY	0.5 mile
NYS DEC	Registered Waste Tire Storage Facilities	SWTIRE	0.5 mile
NYS DEC	Hazardous Substance Waste Disposal Site Study	HSWDS	0.5 mile
NYS DEC	Petroleum Bulk Storage (PBS) - Aboveground Tanks	AST	Target Site
NYS DEC	New York State Spills	NYSPILLS	0.125 mile

New York State Inactive Hazardous Waste Disposal Sites

The New York State Department of Environmental Conservation (NYSDEC) maintains a state priority list of Inactive Hazardous Waste Disposal Sites (SHWS) considered to actually or potentially contaminated and presenting a possible threat to human health and the environment.

Neither the subject property nor any property within 1 mile of the subject property is listed as a SHWS site.

Solid Waste Facility Register

The NYSDEC Solid Waste Facility Register (SWF) records contain an inventory of solid waste disposal facilities or landfills in New York State.

Neither the subject property nor any property within $\frac{1}{2}$ mile of the subject property is listed on the SWF Register.

Leaking Underground Storage Tank Sites

The Leaking Underground Storage Tank Sites (LTANKS) database contains a NYSDEC inventory of reported leaking storage tank incidents. The causes of the incidents are tank test failures, tank failures or tank overfills.

The subject property is not listed as a LTANKS site. Six (6) LTANK sites were identified within ½ mile of the subject property. All six (6) sites have been issued no further action letters by the NYSDEC and, therefore, are unlikely to impact the environmental quality of the subject property.

Petroleum Bulk Storage - Underground Tanks

The NYSDEC Petroleum Bulk Storage – Underground Tanks (UST) database lists facilities with a petroleum storage capacity of more than 1,100 gallons and less than 400,000 gallons.

The EDR report identifies the Island Hills Golf Club property as a UST site. The EDR lists two USTs (one active and one removed) at the site which contain gasoline. The 1,000-gallon active tank corresponds with

the known gasoline tank observed and according to the EDR report the permit expired in 1991. The former 2,000 gallon UST was listed as being removed in 1986. Sites having a UST do not necessarily pose a hazard unless the tanks are leaking or a spill occurs.

Chemical Bulk Storage

The Chemical Bulk Storage (CBS) database is a NYSDEC list of facilities that store regulated hazardous substances in underground tanks of any size.

Neither the subject property nor any property within ½ mile of the subject property is listed in the CBS database.

Major Oil Storage Facilities

The NYSDEC Major Oil Storage Facilities (MOSF) database lists facilities or vessels with a petroleum storage capacity of more than 400,000 gallons.

Neither the subject property nor any property within ½ mile of the subject property is listed as a MOSF site.

Voluntary Cleanup Agreements

The NYSDEC Voluntary Cleanup Program (VCP) database identifies brownfield sites undergoing private sector cleanup as part of redevelopment.

Neither the subject property nor any property within ½ mile of the subject property is listed as a VCP site.

Registered Recycling Facilities

The Registered Recycling Facilities List (SWRCY) is a NYSDEC summary of recycling facilities.

Neither the subject property nor any property within ½ mile of the subject property is listed as a SWRCY site.

Hazardous Substance Waste Disposal Site Study

The Hazardous Substance Waste Disposal Site Study (HSWDS) list includes any known or suspected hazardous substance waste disposal sites. Also included are sites delisted from the HSWDS registry and non-registry sites that EPA Preliminary Assessment reports or Site Investigation reports were prepared.

Neither the subject property nor any property within ½ mile of the subject property is listed as a HSWDS site.

Petroleum Bulk Storage – Aboveground Tanks

The EDR report identifies the Island Hills Golf Club property as an AST site. Two of the three tanks that were identified on the EDR have been removed while the other tank has a permit that has expired. The active tank which is listed corresponds with the diesel AST which was observed in the South Maintenance area.

New York State Spills

The New York State Spills Information Database (NYSPILLS) contains data collected on spills reported to NYSDEC since April 1, 1986.

Neither the subject property nor any property within 1/8 mile of the subject property is listed as a Spills site.

6.1.3 EDR and Brownfield Databases

The table below summarizes the EDR and Brownfield databases that were searched.

Agency	Listing Name or Database Searched	Abbreviat ion	Search Distance
EDR	Dry Cleaner Sites	HDC	0.25 mile
EDR	Manufactured Gas Plants	CGS	1.0 mile
USEPA	Brownfields	BF	0.5 mile

The EDR report indicates that neither the subject property nor any property within the appropriate ASTM search distances appears on the two EDR or Brownfield databases searched.

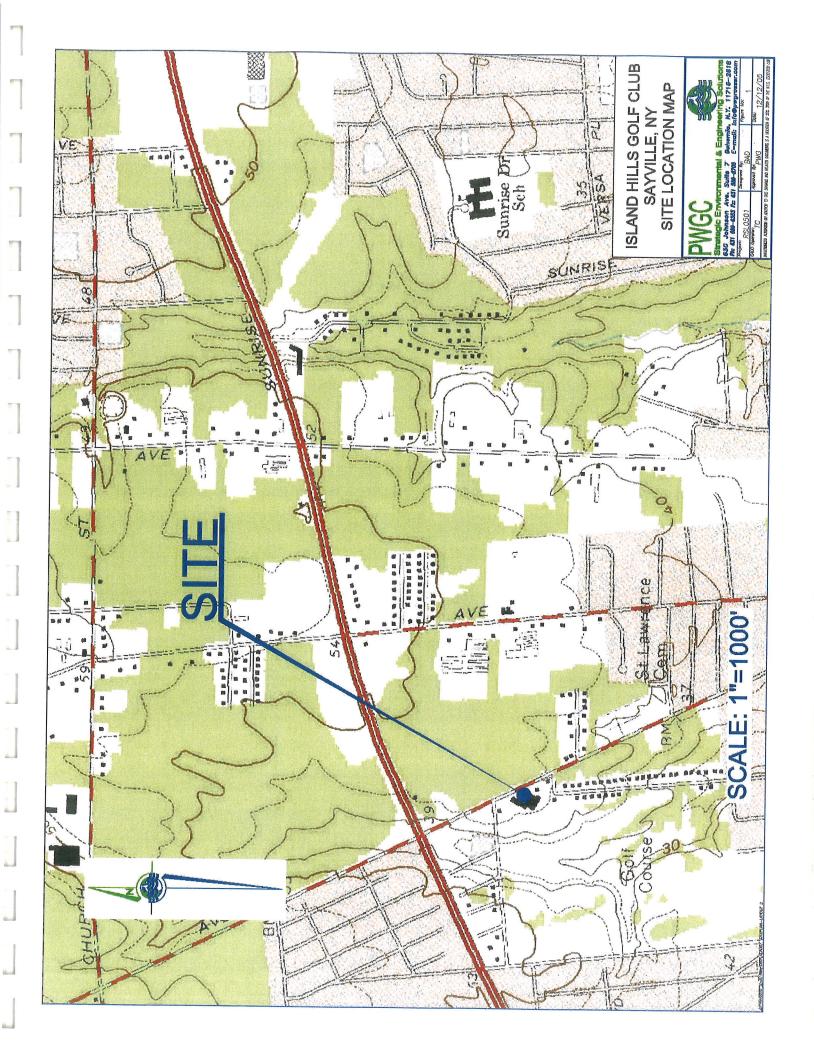
6.2 Freedom of Information Act (FOIA) Requests

FOIA requests were sent to the United States Environmental Protection Agency, Region II (USEPA), the New York State Department of Environmental Conservation, Region I (NYSDEC), the Suffolk County Department of Health Services (SCDHS), and the Town of Islip. At the time of the completion of the report, PWGC received replies from the SCDHS and the USEPA indicating that no files were present. PWGC received no response from the NYSDEC or the Town of Islip. PWGC has made additional attempts to obtain additional records for the site. If additional files become available and provide pertinent information, PWGC will prepare an addendum to the report documenting the findings. Copies of the FOIA request and replies are included in Appendix F

7.0 PHASE I FINDINGS

Recognized environmental conditions (REC) were identified as a result of the site inspection (April 10 and 11, 2006), records review, file searches and interviews. A summary of the conditions are provided below:

Area	REC No.	REC	Comments/Recommendation
Club House Building	01	Sanitary Systems-3	Sample each system primary structure due to age of golf course (1927), potential pesticide herbicide usage and sample results from other sanitary system.
Club House Vicinity	02	Oil Stained Pad & Transformer	Since staining trended off pad to soil, evaluate soil for PCB contamination.
Pro-Shop Building	03	AST Staged on Soil	Fuel oil AST not installed to code and staged on soil. Evaluate soil for petroleum impact.
	04	Sanitary System(s)	Due to the sanitary vent interior to the building, a second system may be associated with the building. Investigate line to determine discharge point. As with REC No. 1, sample each system primary.
·	05	UST	A suspected UST fuel oil vent is located inside the building. Locate UST and determine if removed or properly abandoned and evaluate soil as necessary.
Green	06	Storm Drains-2	Two storm drains located at low point on course, potential for accumulation of contaminants. Sample each structure.
	07	Landscape Debris & Waste Drums Area of Holes 1 & 2	Drums in various stages of decay, some with standing liquid that are improperly stored. Evaluate soils in area.
4	08	Landscape Debris Piles Holes 13 & 16	Landscape debris stockpiled, evaluate soil.
Central Maintenance Building	09	Sanitary System	Building used for storage of sprinkler supplies and bathrooms are present. As with REC No. 1, sample each primary structure.
S. Maintenance Building	10	Maintenance Pit	Maintenance pit inside building used for repairs of equipment. Evaluate if pit has the potential to impact soil and sample as necessary.
	11	Sanitary System & Slop Sink	Slop sink had evidence of staining and discharges to sanitary system and paint thinner usage evident. Sample associated leaching systems.
	12	Storm Drains-2	Storm drains located outside bay doors, Chemical Storage Trailer adjacent to this area. Sample each structure.


Area	REC No.	REC	Comments/Recommendation		
	13	Gasoline UST	UST is out of registration since 1991. Perform tightness testing and register. A former UST was removed in 1991, no information as to condition or sample results. Evaluate soil in vicinity of current UST.		
	14	Chemical Storage Trailer	Various chemicals stored in trailer that is staged on soil, there is potential for mixing of chemicals and surface spills. Evaluate soil surrounding trailer.		
Pool House	15	Sanitary System	Building used for storage currently. As with REC No. 1, sample primary leaching structure.		
General 16 Surface Soil Due to the pesticides		Surface Soil	Due to the age of the golf course and the usage of pesticides and herbicides, evaluation of soils around the course is recommended.		
	17	Groundwater	Since the Suffolk County Department of Health Services periodically monitors groundwater quality around golf courses, it is recommended that quality be evaluated.		

Due to the age of the buildings, it is likely that potential asbestos containing material is present within the buildings. Materials which are in good condition and are not likely to release fibers may remain. Friable and damaged materials should be removed.

As with asbestos, since the buildings were built before the 1978 ban of lead based paint, it is likely that lead based paint is present in the buildings. PWGC observed some peeling paint in the Central Maintenance Building and Pool House. If peeling paint if found within the building, it should be properly removed or repaired.

Mold was identified in two buildings, the Club House and the Pool House. Molds are a class of fungi and have been found to cause a variety of health problems in humans, including allergic, toxicological, and infectious responses. Water damaged drywall and potential mold growth in a storage room located between the kitchen and the catering hall was noted during the inspection. The source of the water damage is likely a roof leak. PWGC recommends repair of the roof leak and removal of the suspected mold damaged materials. There was significant mold growth observed in the bathroom and snack bar areas of the pool house. The Pool House building is in severe disrepair with several water leaks.

FIGURES

APPENDIX A

SITE PHOTOGRAPHS

Photo 1 – View of the general course area.

Photo 2 – View of the maintenance area.

Photo 3 – Above ground diesel tank located at the south maintenance area.

Photo 4 – View of the chemical storage trail in the south maintenance area.

Photo 5 – Petroleum product storage was present in the garage building at the south maintenance area.

Photo 6 – View of the old repair pit observed in the garage building.

Photo 7 –View of the slop sink in the garage building. Evidence of chemical dumping was evident by the condition of the sink.



Photo 8 – View of the central maintenance / bathroom building.

Photo 9 – Water damage and possible mold growth which was observed in the clubhouse building.

Photo 10 – Staining was observed in the vicinity of the electrical transformer south of the clubhouse.

Photo 11 – View of the suspected fuel oil tank located within the pro-shop.

Photo 12 – View of the sewer vent which was observed in the Pro-Shop.

Photo 13 – Possible fuel oil tank fill which was observed on the west side of the Pro-Shop building.

Photo 14 – View of the 550 gallon fuel oil tank located behind the Pro-Shop.

Photo 15 – View of the organic debris area located in the vicinity of hole 16.

Photo 16 – View of drum debris observed in the vicinity of Holes 1 and 2.

Photo 17 – additional metal drum observed in the vicinity of Holes 1 and 2.

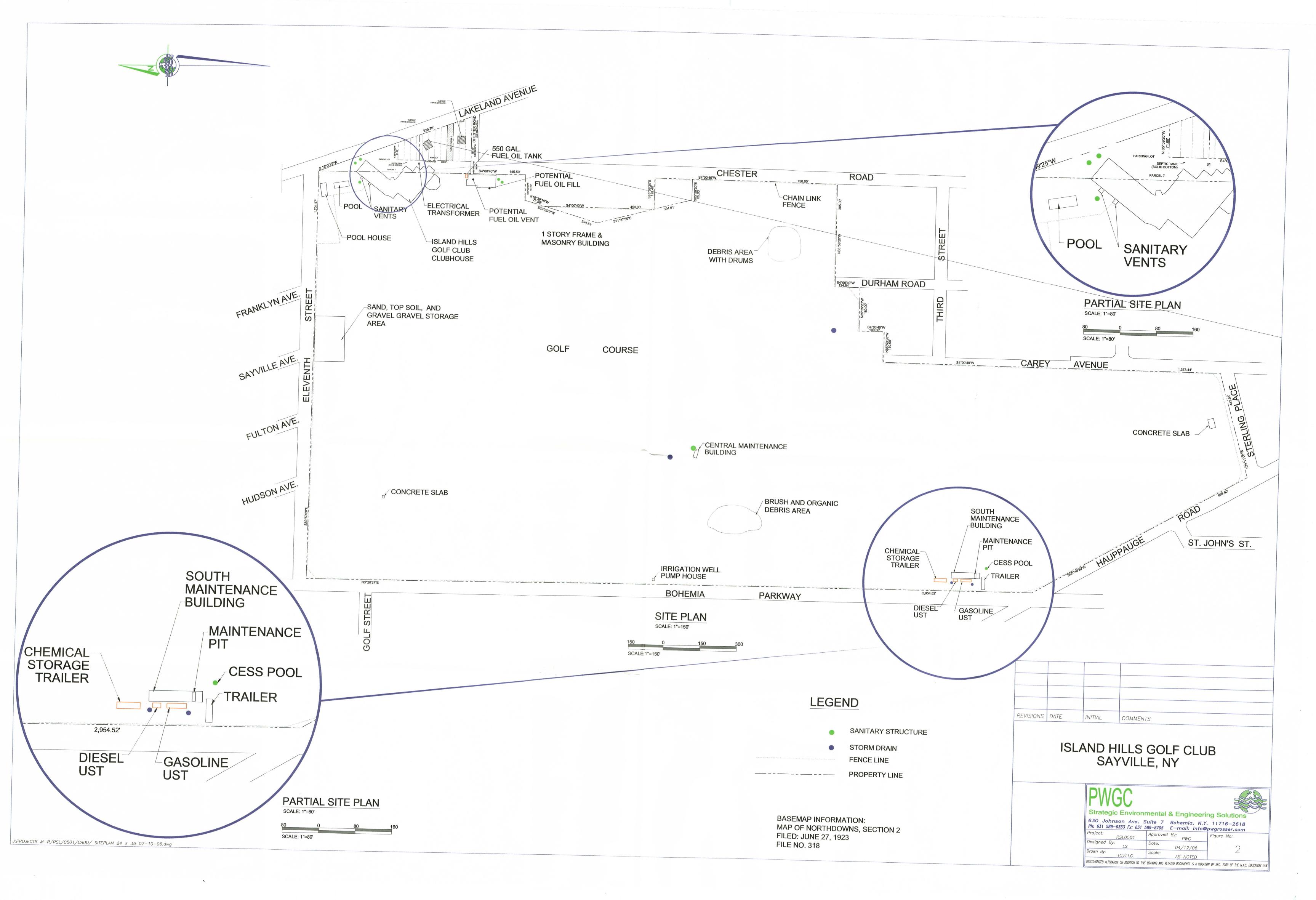

Photo 18 – A plastic 5 gallon drum was also present in the vicinity of Holes 1 and 2.

Photo 19 – view of the pool house.

Photo 20 – The interior of the pool house was in poor condition.

PHASE II

Island Hills Golf Club Sayville, New York

Prepared for:

R Squared LLC 555 Madison Avenue New York, NY 10022

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, NY 11716 Phone: (631) 589-6353

Fax: (631) 589-8705

Project Director: Lisa Santoro Email: lisas@pwgrosser.com

July 2006

EXECUTIVE SUMMARY

A Phase II investigation was performed to address the 15 Recognized Environmental Conditions (RECs) identified in the Phase I Environmental Site Assessment ("ESA") for the Island Hills Golf Course, Sayville, New York. The site was operated as a golf course from 1927 and has a high potential for historical usage of pesticides and herbicides; therefore an assessment of general site conditions, soil and groundwater, was performed. The Phase II investigation identified significant soil contamination in surface soil and within leaching structures which warrant further investigation and/or remedial action. In addition, environmental compliance issues relative to storage tanks and closures were identified.

Surface soil sample results exceeded regulatory criteria at 29 of the 30 locations around the site for semi volatile organic compounds (SVOCs), metals, and/or pesticides; in some cases the exceedances were as much as 100 times the regulatory level. Based upon these exceedances it is recommended that regulatory officials be engaged to determine the extent of remedial action that may be required. Since significant contamination of SVOCs, metals and pesticides is widespread and higher concentrations may be present, we recommend the installation of groundwater monitoring wells and sampling to determine whether groundwater quality has been impacted. In addition, at a minimum, preparation and implementation of a Site-Specific Soil Management Plan (SMP) is recommended for the Island Hills Golf Course to protect workers, guests and prevent the spread of contamination. The SMP should be accompanied by a Site Specific Health and Safety Plan to communicate hazards, protect workers and outline annual training requirements.

Concentrations of contaminants exceeded regulatory levels and warrant remediation at five of ten locations relative to structures that fall under the US Environmental Protection Agency's (EPA) Underground Injection Control (UIC) Program; locally UICs are under the jurisdiction of the Suffolk County Department of Health Services (SCDHS). These results were identified at five locations; two associated with the Club House and three relative to the South Maintenance Building: sanitary leaching structure, maintenance pit and storm drain. Based upon these results, remediation by removal of sediments is warranted and should be performed in accordance with SCDHS protocol.

Proper closure of below grade structures and compliance with waste drum storage and storage tank regulations is necessary. Based upon site conditions it is likely that there is a former sanitary structure associated with the Pro-Shop and it is recommended that this structure be located, sampled and properly closed in accordance with SCDHS protocol. In addition, it is recommended that the waste drums in the landscape debris area and their contents be properly characterized and disposed and a SCDHS compliant staging area be established. There are three issues associated with petroleum storage relative to the support buildings that require action. On-site petroleum storage tanks are not in compliance and require registrations as well as upgrades. Also there is an inactive underground storage tank located inside the Pro-Shop, beneath the concrete floor in the golf cart storage area that should be registered and properly abandoned. In addition, relative to the Pro-Shop there is a fuel oil above ground storage tank that does not comply with SCDHS requirements and it is recommended the tank be upgraded.

The sanitary system associated with the Central Maintenance Building was not been sampled due to a broken cover. Four sanitary structures associated with the Club House were not sampled due to site access limitations. It is recommended that these structures be sampled once access is granted. The Central Maintenance Building may have been a storage location for chemicals and pesticides, indicating a

moderate potential for contamination. In addition, the Club House septic tank sample reported concentrations in excess of SCDHS criteria and it is expected that this structure was periodically maintained, reducing contaminant levels. Conversely, the four associated leaching pools do not have covers to grade and would not have been maintained and therefore has a higher potential to have accumulated contaminants that would likely require remediation.

Groundwater sample results indicate concentrations met applicable regulatory criteria, with the exception of metals. Metals exceeded the groundwater standards in all six locations. To determine if groundwater quality has been impacted by on-site activities we recommend further groundwater monitoring.

To rectify environmental compliance issues as well as address environmental conditions that warrant further investigation and remedial action, costs were compiled. The estimated costs along with the major assumptions are summarized in the following table.

No	Issue	RECs	Cost	Comments/Assumptions
1	Environmental Compliance	03, 07, & 13	\$10,000 \$12,500 Plus Fines \$12,000	UST Registrations and upgrade AST. In addition to filing the registrations and fees, the SCDHS has been issuing fines for lapsed registrations. Upgrade ProShop fuel oil AST. Disposal of waste drums and their contents: assume
				no process knowledge, characterization of standing liquid, disposal of three drums of non-hazardous liquid, 2 days to complete drum removal and disposal of 10 empty drums.
2	UST Abandonment	05	\$6,000 \$8,000	Fuel oil UST abandonment. Assumes 1-550 gallon UST, 1 day to complete, no liquid present, one drum of sludges, sample below UST with no contamination, backfill with clean sand and UST closure report.
3	UIC Remediation / Closure	01, 04A, 09, 10, 11, & 12	\$40,000 – \$50,000	UIC Remediation: 10 structures - Club House systems: SS-1, SS-3 septic tank and 4 UIC structures (not sampled), Central Maintenance Bldg SS-5 (not sampled) S. Maintenance Building: maintenance pit, sanitary structure SS-6 and storm drain SD-4. Assumes removal of sediments effective and clean endpoint samples obtained.
				UIC Closure: Locate & sample former Pro-Shop Sanitary (SS-4A)-assume results do not warrant cleanout, obtain SCDHS approval to backfill clean sand and obtain closure.
4	Surface Soil Contamination	16	\$6,750,000 \$7,750,000	Surface Soil Remedial Action: assume excavate to 0.5 feet across site with off-site disposal and backfill.
5	Groundwater Quality	17	\$60,000 \$75,000	Groundwater Monitoring: installation of 10 groundwater monitoring wells with four rounds of samples and assume no groundwater remediation is warranted.

TABLE OF CONTENTS ISLAND HILLS GOLF CLUB, SAYVILLE, NEW YORK PHASE II RESULTS

1.0 INTRODUCTION	
2.0 PHASE II ACTIVITIES	
2.2 Leaching Structure Sampling	3
2.3 Groundwater Sampling	3
3.0 PHASE II RESULTS	
3.1.1 REC-01 Sanitary System, UIC	6
3.2.1 REC-03 AST	
3.3.1 REC-06 Storm Drains-UIC	9
3.5 South Maintenance Building	11
3.5.1 REC-10 Maintenance Pit	
3.7 General Conditions	15
3.7.1 REC-16 Soil Quality	
4.0 SOIL MANAGEMENT PLAN	17
5.0 CONCLUSIONS AND RECOMMENDATIONS	18

FIGURES Located at Back of Report

Plan

Figure 2 Site Plan with Surface Soil Sample Results

TABLES Located at Back of Report

Table 1	REC Number and Sample IDs
Table 2	UIC Sample Results
Table 3	Surface Soil Sample Results
Table 4	Petroleum Storage Tank Sample Results
Table 5	Groundwater Sample Results

APPENDICES Located at Back of Report

Appendix A Data Sheets Soil Samples
Appendix B Data Sheets Groundwater Samples

1

1.0 INTRODUCTION

The Phase II investigation conducted at Island Hills Golf Course (IHGC), Sayville, New York, was based upon the recognized environmental conditions (RECs) discussed in the Phase I Report. The Phase II was intended to further assess the 15 RECs as well as general site conditions throughout the course. Field activities were performed in May 2006 and a total of 48 samples were collected (42 soil and 6 groundwater) and sample results indicate further investigation and/or remedial action is warranted.

In addition, due to site access limitations, five leaching structures were not sampled; one associated with the Central Maintenance Building and four relative to the Club House.

1.1 Site Description

The subject property is known as Island Hills Golf Club located at 458 Lakeland Avenue, Sayville, New York. The site is located in the Town of Islip and in Suffolk County. The property is approximately 113 acres in size. The subject area consists of an 18-hole golf course and various buildings:

- Club House
- Pool House
- Pro-Shop
- Pump House
- Central Maintenance / Bathroom Building
- Southern Maintenance / Bathroom Building.

A paved parking area for the Pool House is located on the north side of the site. Another main parking area for the Club House and golf course is located on the East side of the site, which P.W. Grosser Consulting, Inc. (PWGC) evaluated and documented under a separate Phase I Environmental Site Assessment (ESA) for Parcels 1 and 2, in April 2006.

2.0 PHASE II ACTIVITIES

Phase II activities included evaluating systems and collecting sediment, soil, and groundwater samples. Table 1 summarizes the 15 RECs and sample identifications. System evaluations consisted of tracing lines

to determine locations of underground storage tanks (USTs) and sanitary systems. Sampling activities included surface soil, subsurface soil, sediment from leaching structures (sanitary and storm drains), and groundwater sampling. A PWGC Field Hydrogeologist was on-site to document field activities and to perform sample collection.

2.1 Soil Sampling

Soil samples were collected from various depths either manually or by a vehicle mounted unit using direct-push technology. To minimize disturbance and expedite sample collection, a direct-push unit was used to collect both surface and subsurface soil samples, unless site limitations restricted its use.

Surface soil samples were collected continuously from grade to a depth of four feet below and subsurface samples were driven to the desired depths. Subsurface samples were collected at one location, relative to the UST associated with the South Maintenance Building. Soil samples were extracted in dedicated sample liners to prevent cross contamination. Non-disposable sampling equipment was cleaned using a distilled water and Alconox detergent wash followed by a distilled water rinse prior to the collection of each sample. At each location, two samples were extracted adjacent each other to obtain sufficient sample volume. One core was archived in the event that analysis of samples from deeper depths proved to be necessary.

Soils were screened with a photoionization detector (PID) for the presence of volatile organic compounds (VOCs). Surface soil samples were collected from grade to a six-inch depth and placed in laboratory supplied glassware and stored in a cooler packed with ice for transport to Long Island Analytical Laboratories, a laboratory certified under the NYS Environmental Laboratory Approval Program. Soil samples were submitted for analysis of Suffolk County Department of Health Services (SCDHS) parameter lists, including VOCs by US Environmental Protection Agency (EPA) Method 8260, semi-VOCs (SVOCs) by EPA Method 8270, metals, pesticides and herbicides, including endrin aldehyde, toxaphene, and dacthal by EPA Method 8081, unless noted otherwise.

2.2 Leaching Structure Sampling

Leaching structures fall under the EPA's Underground Injection Control (UIC) Program. In Suffolk County these structures are under the jurisdiction of the SCDHS. Sediment samples were collected manually using a decontaminated handheld augur from the base of each leaching structure to a 6-inch depth. These samples were submitted for the same suite of analyses and analytical methods as the surface soil samples: SCDHS parameters for VOCs, SVOCs, metals, pesticides and herbicides including endrin aldehyde, toxaphene, and dacthal.

2.3 Groundwater Sampling

Groundwater samples were collected from six locations around the site. At each location, groundwater samples were collected from the water table using Geoprobe™, a direct push drilling technology. A two-foot mill-slot screen was driven to the top of the water table. Disposable polyethylene tubing fitted with a stainless steel check valve was inserted through the rods into the water bearing zone and the tubing manually oscillated extract groundwater. Purging was conducted to reduce turbidity prior to sampling. Non-disposable sampling equipment was cleaned using an Alconox detergent wash and a potable water rinse prior to the collection of each sample. The samples were placed in pre-cleaned laboratory supplied glassware and stored in a cooler packed with ice for transport to Long Island Analytical Laboratories for analysis of VOCs, SVOCs, metals, perchlorate, pesticides and herbicides. The suite of analyses was specific to golf courses and was determined based upon SCDHS' periodic monitoring of golf courses under the groundwater quality program.

3.0 PHASE II RESULTS

Results are discussed by REC number and grouped by building or area (summarized in Table 1). Samples were analyzed for SCDHS list of parameters for VOCs, SVOCs, metals, pesticides and herbicides, unless noted otherwise in the following sections and sample identifications are also provided in Table 1. To evaluate sample results, various sets of regulatory criteria were used and are:

Media	Criteria	Document
Surface/	Recommended Soil Cleanup	New York State Department of Environmental Conservation
Subsurface	Objectives (RSCOs)	(NYSDEC) Technical and Administrative Guidance

Media	Criteria	Document	
Soil		Memorandum No. 4046, 12/2000.	
UIC Samples	SCDHS Action Levels	SCDHS Article 12 SOP No. 9-95 Pumpout and Soil Cleanup Criteria, 7/1998	
Groundwater	NYSDEC Standards & Guidance	NYSDEC Ambient Water Quality Standards & Guidance	
	Values	Values & Groundwater Effluent Limitations, 6/1998.	

Data were compared with the above referenced criteria in Tables 2 through 5.

UICs were sampled given the potential for introduction of contaminants from storage areas and since building usage many have varied with time, any sanitary structure was sampled and data are contained in Table 2.

Surface soil samples were collected from grade to 6 inch depth relative to RECs and to assess general soil quality conditions around the site and results are contained in Table 3. Soil samples were collected relative to petroleum storage tanks and results are contained in Table 4. To assess groundwater quality around the site and determine if an on-site source of groundwater contamination exists, groundwater samples were collected and results are presented in Table 5. Copies of the data sheets for soil and groundwater samples are contained in Appendices A and B, respectively.

In summary, the Phase II has identified environmental compliance issues as well as environmental conditions warranting further investigation and remedial action. UIC sampling indicates remedial action is warranted relative to five of 10 structures sampled. Environmental compliance issues were identified relative to UICs as well as storage tanks. Surface soil sample results exceeded regulatory limits at 29 of the 30 locations around the site. Based upon these exceedances it is recommended that regulatory officials be engaged to determine the extent of remedial action that may be required. Since significant contamination of SVOCs, metals and pesticides is widespread and higher concentrations may be present, we recommend the installation of groundwater monitoring wells and sampling to determine whether groundwater has been impacted. In addition, preparation and implementation of a Site-Specific Soil Management Plan (SMP) is recommended for the entire Island Hills Golf Course. The SMP should detail soil management practices in areas identified with soil contamination whenever earthwork is performed; the SMP is discussed in Section 4.0. The SMP should be accompanied by a Site Specific Health and Safety

Plan to communicate hazards, protect workers and outline annual training requirements. Sample result details are provided in the following sections by building or area and REC number.

3.1 Club House Building

There were two RECs identified relative to this building or its immediate vicinity, REC-01 (sanitary system UICs) and REC-02 (transformer and pad oil staining). Based upon the results further investigation and remedial action is warranted for the sanitary systems, REC-01.

3.1.1 REC-01 Sanitary System, UIC

There was one REC identified for the Club House relative to sanitary systems. Based upon the Phase I three separate systems were believed to be present at the Club House. After further evaluation it was determined that there were only two systems, SS-1 and SS-3; SS-3 had four below grade structures that we were not permitted to sample, refer to Figure 1 for locations. Sampling details and results are discussed in the following paragraphs.

Sanitary system SS-1 was located northwest of the clubhouse and consisted of a primary and secondary leaching pool, labeled SS-1 and SS-1-OF, respectively. Leaching pool SS-1 was constructed of eight-foot diameter pre-cast concrete rings. It had a soil bottom approximately 16 feet below grade and contained approximately seven feet of water and sludge. SS-1-OF was also constructed of eight-foot diameter pre-cast concrete rings, with a soil bottom approximately 20 feet below grade, and contained no water. A sample was collected from SS-1 and submitted for laboratory analysis.

Sanitary system SS-3 was located northeast of the clubhouse and consisted of a septic tank and a distribution box which connected directly to four leaching pools (SS-3A through SS-3D). There was no accumulation of sediment in the distribution box. Septic tank SS-3 was a solid concrete structure with a solid bottom approximately nine feet below grade surface. It contained approximately five feet of water and sludge. The septic tank connected to the distribution box which was constructed of three-foot diameter solid pre-cast concrete rings with a solid bottom approximately five feet below grade surface. Four pipes exited the distribution box approximately four feet below grade surface, connecting to four leaching pools.

PWGC
Strategic Environmental & Engineering Solutions

A remote tracing device was used to locate the four below grade structures, SS-3A through SS-3D, which will require excavation for sampling. Site disturbance during golf season is not permitted and sampling of these structures was not performed. However, a sample was collected from the septic tank, SS-3.

Samples were submitted for analysis of SCDHS parameter lists and results are contained in Table 2.

The concentration of lead in SS-1 was 392 mg/Kg, which is essentially equivalent to the SCDHS Action Level of 400 mg/Kg. Other parameters were either not detected or were detected at concentrations below applicable SCDHS Action Levels.

Chlorobenzene was reported at 9,720 ug/Kg for SS-3, which is in excess of the Action Level of 3,400 ug/Kg.

Based upon the results for SS-1 and SS-3, it is recommended that these structures be remediated in accordance with SCDHS' protocol. In addition, to determine if the primary leaching structures for the SS-3 system have been impacted with VOCs or other contaminants, they should be sampled when access is granted.

3.1.2 REC-02 Transformer Oil Staining

Sample S-1 was collected from the soil adjacent to a transformer located on the east side of the clubhouse, see Figure 2 for location. The transformer, pad and adjacent soil were stained with oil. S-1 was submitted to the laboratory for analysis of PCBs. Results for S-1 indicate concentrations were not detectable and therefore, met RSCOs. No further action is recommended based upon the results.

3.2 Pro-Shop

Four RECs were identified relative to this building or its immediate vicinity, REC-03 (AST), REC-04 (sanitary UICs), REC-05 (UST), and REC-05A (outside storage area). Based upon the results, further investigation is warranted and regulatory officials will require remedial action.

3.2.1 REC-03AST

A heating oil aboveground storage tank (AST) associated with the Pro-Shop is staged on soil, without secondary containment. A surface soil sample S-11 was collected and submitted for VOCs and SVOCs in accordance with NYSDEC *Spill Technology & Remediation Series*, August 1992. Results indicate concentrations of SVOCs, benzo (b) fluoranthene (138 ug/Kg) and benzo (a) pyrene (87 ug/Kg), in excess of RSCOs both of which are 61 ug/Kg. Refer to Figure 2 for location. Based upon these results, remedial action may be required by regulatory agencies and it is recommended these soils be managed in accordance with a site-specific SMP.

In addition, it is recommended that the AST be registered and upgraded to comply with SCDHS requirements.

3.2.2 REC-04 / 04A Sanitary Systems, UIC

There is one active sanitary system associated with the Pro-Shop, located outside the building to the south (REC-04) and potentially a former sanitary leaching structure or system (REC-04A).

Sanitary system SS-4, REC-04, is located south of the Pro-Shop and consisted of a primary and secondary leaching pool, SS-4 and SS-4-OF, respectively. Leaching pool SS-4 is constructed of eight-foot diameter pre-cast concrete rings. It has a soil bottom approximately 11 feet below grade and contained approximately two feet of water and sludge. SS-4-OF is also constructed of eight-foot diameter pre-cast concrete rings and has a soil bottom approximately 12 feet below grade and contained no water. Refer to Figure 1 for locations. A sample was collected from the primary pool SS-4 and submitted for analysis of SCDHS parameters and results are contained in Table 2. VOCs were below laboratory detection limits; however, concentrations of SVOCs, metals and one pesticide, chlordane were detected and met SCDHS Action Levels or RSCOs.

In addition to SS-4, there is a potential former system inside the building, REC-04A. The sanitary vent is inside the golf cart storage area and there is evidence of a concrete patch trending through the building to the south, towards to the active SS-4 system. Based upon this it is possible that an original system existed (REC-04A). Attempts to locate the structure with a tracing device were unsuccessful and trenching or a

specialized geophysical survey is recommended to locate. Once located, the system can be exposed, sampled and properly closed in accordance with SCDHS protocol.

3.2.3 REC-05 Fuel Oil UST

A fuel oil vent is located inside the Pro-Shop in the golf cart storage area. The UST was located by advancing a rod manually to locate the top of the tank that is below a concrete floor; however, the size could not be confirmed. The approximate location is presented on Figure 1. The capacity is suspected to be 550 gallons. Based upon this it is recommended the tank be registered, and properly removed or abandoned to obtain closure. Abandonment will require cutting the concrete floor, excavating to expose the tank, cutting the tank open to gain access, as well as removal and proper disposal of oil and sludge. If the UST is abandoned in place, cutting a hole through the base of the tank or installation of a monitoring well may be required by SCDHS. The UST can then be properly abandoned and a closure report submitted. If a monitoring well is required, groundwater monitoring will be necessary for a period of time (at a minimum one year).

3.2.4 REC-05A Outside Storage Area

A small area of mounded soil on the east side of the Pro-Shop along the fence is used for improper storage of batteries and debris. A surface soil sample was collected, S-10, and analyzed for SCDHS parameters, VOCs, SVOCs, metals, pesticides and herbicides. Results indicate six compounds exceeded RSCOs and are summarized below as well as on Figure 2.

Parameter	RSCO	Result
Benzo (a) pyrene	61 or MDL	221
Benzo (b) fluoranthene	61 or MDL	464
Chlordane	540	3,029
Dieldrin	44	269
Heptachlor Epoxide	2 or MDL	37
Mercury	.1 or SB	0.430

Notes:

MDL - Analytical laboratory method detection limit

Based upon these results, remedial action may be required by regulatory officials and it is recommended that the soils in this area be included as part of a site-specific SMP.

3.3 Course RECs

Three RECs, REC-06 through REC-08, were identified at various locations around the course that warranted sampling. REC-06 is a UIC issue (storm drains located on the course) REC-07 and REC-08 are landscape debris areas. The REC-07 area also contained waste drums. Based upon the results, remedial action may be required by regulatory agencies. However, at a minimum it is recommended these soils be managed in accordance with a site-specific SMP.

3.3.1 REC-06 Storm Drains-UIC

Two storm drains, SD-1 and SD-2 were identified as low points on the course. These storm drains have the potential to accumulate contaminants, specifically from pesticide/herbicide applications. Refer to Figure 1 for locations. Samples from both drains were collected and analyzed for SCDHS parameters, VOCs, SVOCs, metals, pesticides and herbicides and results are contained in Table 2. There were low detections of VOCs and SVOCs in SD-1 as well as metals and chlordane in both SD-1 and SD-2. Concentrations met SCDHS Action Levels as well as the RSCOs for pesticides.

3.3.2 REC-07 Landscape Debris & Waste Drums Area of Holes 1 & 2

There is a landscape debris area that contains waste drums, in various stages of decay and some with standing liquid in the central-southeast corner of the site by Holes 1 and 2.

Soil was extracted at four locations, S-2 through S-5, and evaluated for evidence of contamination, visually and with a PID. Two samples, S-4 and S-5, were collected from locations suspected to be worst case adjacent overflowing or decaying drums and submitted for analysis. These surface soil samples were analyzed for SCDHS parameter lists for VOCs, SVOCs, metals, pesticides and herbicides and results are contained in Table 3. The locations are presented on Figure 2 with results. Concentrations exceeded the RSCOs for, chlordane, heptachlor epoxide and mercury and are summarized below.

Parameter	RSCO	S-4	S-5
Chlordane	540	918	144
Heptachlor Epoxide	2 or MDL	50	9.237
Mercury	.1 or SB	3.983	0.884

Notes:

Bold/Shaded Exceeds RSCO

Mercury concentrations in this area are 8 to 10 times the RSCO and heptachlor epoxide is 25 times the RSCO. Based upon this, remedial action may be required by regulatory agencies. However, at a minimum it is recommended these soils be managed in accordance with a site-specific SMP. In addition, the decaying waste drums and their contents require proper disposal.

3.3.3 REC-08 Landscape Debris Pile Area -- Holes 13 & 16

There were landscape debris piles with standing water near Holes 13 and 16, located on the west, central portion of the site.

One sample was collected, S-6, at a low point where there is potential for accumulation of sediments and contaminants. The surface soil sample was analyzed for SCDHS parameter lists for VOCs, SVOCs, metals, pesticides and herbicides and results are contained in Table 3. Exceedances for SVOCs, metals and pesticides are presented below and the location with results is presented on Figure 2.

Parameter	RSCO	Result
Benzo (a) pyrene	61 or MDL	707
Benzo (b) fluoranthene	61 or MDL	971
Benzo (a) anthracene	224 or MDL	616
Dibenzo (a,h) anthracene	14.3 or MDL	120
Heptachlor Epoxide	2 or MDL	9.2
Mercury	.1 or SB	0.884

Notes:

Bold/Shaded Exceeds RSCO

MDL – Analytical laboratory method detection limit

The exceedances for SVOCs, pesticides and metals in this sample ranged two to eight times the RSCO. Based upon these results, remedial action may be required by regulatory agencies and preparation and implementation of a site-specific SMP is recommended.

3.4 Central Maintenance Building

Currently, the Central Maintenance Building is used for storage of sprinkler supplies. Bathrooms are present in this building as well. Since use of the building with time may have varied, sampling of the associated sanitary system was recommended (REC-09). The primary leaching pool was located and the cover exposed by hand digging, SS-5, refer to Figure 1 for the location. Once exposed it was discovered that the concrete cover was in poor condition and collapsing. The Site Superintendent did not want to remove the cover without a replacement. We were informed that a cover was in the processes of being ordered and it was not known when it would be available. Based upon this, sampling has not been performed and is recommended.

3.5 South Maintenance Building

The South Maintenance Building is located on the southwest property boundary and five RECs were identified relative to this building and its immediate vicinity. The building and area are used for the repair and storage of equipment as well as mix chemicals. A maintenance pit, slop sink and bathrooms are also present in the building. Bay doors are present on the west side of the building and the immediate vicinity is paved.

For this area REC-10 through 12 pertain to UIC issues: the maintenance pit, sanitary system and storm drains. REC-13 and 13A are relative to active and former UST issues. REC-14 is relative to chemical mixing and storage areas. Based upon the investigation results, remedial action will be required by regulatory agencies relative to three of the four UICs. As has been seen throughout the site, surface soil concentrations in this area are also in excess of regulatory limits and may require remedial action. At a minimum, it is recommended these soils be managed in accordance with a site-specific SMP.

3.5.1 REC-10 Maintenance Pit

A maintenance pit was located inside that was sealed with a wood plank door of approximately three feet by five feet. Based upon the condition and seal it appeared that the door had not been opened in the recent past. The door was pried open and the pit found to be approximately four feet deep with a tan sand bottom. Staining was noted and a sample was collected, PIT-1, and analyzed for SCDHS parameters, VOCs, SVOCs, metals, pesticides and herbicides. Results are contained in Table 2. The approximate

location is presented on Figure 1. Concentrations of SVOCs, and metals were detected but met applicable SCDHS Action Levels. One pesticide, heptachlor epoxide, was detected at a concentration of 9.2 ug/Kg which is above the RSCO of 2.0 ug/Kg. In addition, another pesticide chlordane was detected at 510 ug/Kg which is just below the RSCO of 540 ug/Kg. Based upon these results, it is recommended that soil be removed and the maintenance pit be sealed in accordance with SCDHS protocol.

3.5.2 REC-11 Slop Sink & Sanitary System

A slop sink is present in the south east corner of the building and was stained with paint. Paint thinners were stored on the counter adjacent the sink. Based upon this the line was traced to determine the discharge receptor and sampled. Tracing determined the sink is connected to the sanitary system and the leaching structure was located. The top of the structure was approximately one foot below grade and was exposed and sampled, SS-6 (see Figure 1 for location). The sample was submitted for SCDHS parameters, VOCs, SVOCs, metals, pesticides and herbicides. Results are contained in Table 2. Concentrations of SVOCs exceeded SCDHS Action Levels. In addition, mercury and chlordane exceeded their respective criteria. Results are summarized below.

Parameter	SCDHS	RSCO	Result
Benzo (b) fluoranthene	2,200	NA	2,568
Chrysene	800	NA	2,632
Chlordane	NA	540	12,505
Mercury	2.0	NA	2.039

Notes:

Bold/Shaded Exceeds RSCO

NA - Not available or not applicable

Based upon these results it is recommended that this structure be remediated in accordance with SCDHS protocol. In addition, any associated overflows should also be sampled to determine if impacted. At the time of sampling the liquid level in the structure was to capacity and any inlets or outlets were not visible and the potential for overflows could not be identified.

3.5.3 REC-12 Two Storm Drains

Two storm drains, SD-3 and SD-4, are located outside the building's bay doors, in a paved area (see Figure 1 for locations). Since these drains have the potential to accumulate contaminants associated with

vehicle/equipment maintenance or chemical mixing, sampling was performed. These samples were submitted for SCDHS parameter lists for VOCs, SVOCs, metals, pesticides and herbicides. Results are contained in Table 2.

Concentrations in SD-3 met applicable SCDHS Action Levels or NYSDEC RSCOs. However, concentrations in SD-4 exceeded the SCDHS Action Levels or NYSDEC RSCOs for metals and pesticides and these results are summarized in the following table.

Parameter	SCDHS	RSCO	Result SD-4
Chlordane	NA	540	963
Heptachlor Epoxide	NA	2.0 or MDL	22
Mercury	2.0	NA	4.805

Notes:

Bold/Shaded Exceeds RSCO

NA – Not available or not applicable MDL-Analytical laboratory method detection limit

Based upon these results, no further action is recommended for SD-3. However, concentrations in SD-4 exceed regulatory criteria and the structure should be remediated in accordance with SCDHS protocol.

3.5.4 REC-13 Gasoline UST (Former & Active)

An active 1,000 gallon fiberglass UST is present outside the South Maintenance Building to the west, and has been out of registration since 1991. In addition, a former UST was removed in 1991, however, there was no information available as to its condition or if samples were collected. Based upon this soil sampling was performed.

One boring was installed utilizing direct-push technology on the south side of the UST to a depth of 12 feet below grade. Soil samples were collected continuously and field screened by a PWGC hydrogeologist. The soils were characterized as dry, medium to coarse, light to light reddish sand. There were no PID responses or evidence of contamination noted. The deepest interval, 10 feet to 12 feet below grade surface, UST-M, was submitted to the laboratory for analysis for VOCs by EPA method 8021 (STARS) and SVOCs by EPA method 8270 (STARS) and results are contained in Table 4. The sample location UST-M is presented on Figure 2.

There were no VOCs or SVOCs detected in UST-M relative to the active UST. Based upon this no further action is recommended. The location of the former gasoline UST is not known and a groundwater sample was collected downgradient of this area to determine if a source of groundwater contamination is present. This is discussed in Section 3.8.2.

3.5.5 REC-14 Chemical Storage Trailer

A chemical storage trailer is located on soil off the northwest corner of the South Maintenance Building at the end of the paved area. Small work areas outside the trailer indicative of chemical mixing were noted. Two surface soil samples were collected (S-7 and S-8). The samples were submitted for SCDHS parameter lists for VOCs, SVOCs, metals, pesticides and herbicides and results are contained in Table 3. Figure 2 presents the sample locations and summarizes exceedances.

Results are in excess of the RSCOs for mercury and heptachlor epoxide in both samples. Concentrations in excess of these criteria are summarized below.

Parameter	RSCO	Result S-7	Result S-8
Heptachlor Epoxide	2 or MDL	11	9.8
Mercury	.1 or SB	0.309	0.440
Notoci			

Notes:

Bold/Shaded Exceeds RSCO

MDL - Analytical laboratory method detection limit

Due to these exceedances of RSCOs, remedial action may be required relative to the surface soils. In addition at a minimum, it is recommended that any soil disturbance in this area should be performed in accordance with a site-specific SMP.

3.6 **Pool House**

The Pool House is currently used for storage of poolside chairs and pool equipment. The building has a snack bar area and bathrooms, which are no longer in use. In addition a pump room is present inside the building. Based upon the potential for storage of chemicals the Pool House was identified as REC-15 and

sampling of the sanitary system (SS-7) was performed. The sanitary system is located south of the pool house consists of a single leaching pool constructed of eight-foot diameter pre-cast concrete rings. It was dry at the time of sampling. The sample was submitted for SCDHS parameters, VOCs, SVOCs, metals, pesticides and herbicides and results are contained in Table 2. The SS-7 location is presented on Figure 1.

Concentrations in the Pool House sanitary structure met applicable SCDHS and NYSDEC criteria and based upon this, no further action is recommended. If the Pool House is not placed back in service or is demolished, it is recommended that the sanitary structure be closed in accordance with SCDHS protocol.

3.7 General Conditions

Since the subject property has been operated as a golf course since 1927 and current conditions may not reflect historical course layout and usage, evaluation of soil and groundwater quality around the course was performed (REC-16 and 17 respectively).

Of the 24 surface soil samples collected to assess general conditions, 23 exceeded regulatory levels. Figure 2 presents the sample locations and illustrates the exceedances. In addition, metals exceeded NYSDEC groundwater standards in all six groundwater samples collected. Based upon this regulatory action may be required relative to soil and groundwater. In addition the installation of monitoring wells is recommended to further evaluate groundwater quality and determine if a plume exists.

3.7.1 REC-16 Soil Quality

A total of 24 surface soil samples were collected around the course. Samples GS-1 through GS-18 were collected on the fairway as close as allowed to the greens, since it is anticipated that the greatest pesticide and herbicide usage would be in these areas. Sample GS-19 was positioned in the center of the driving range. Samples GS-20 through GS-24 were positioned at various locations to reduce spacing between the fairway/green samples and were placed toward the center of the site but typically placed off the fairway near vegetated areas. These samples were analyzed for SCDHS list of parameters for VOCs, SVOCs, metals, pesticides and herbicides and results are contained in Table 3. Figure 2 illustrates sample locations as well as selected data. At a minimum for each location results for chlordane, heptachlor

PWGC Strategic Environmental & Engineering Solutions

epoxide and mercury are presented. Other contaminants are also presented if concentrations exceeded regulatory criteria.

Results indicate concentrations of SVOCs, metals and pesticides are present in excess of RSCOs. The NYSDEC RSCOs were exceeded in 23 or the 24 samples representing conditions throughout the course.

VOCs and herbicides met RSCOs in the 24 samples.

SVOCs exceeded RSCOs at locations GS-7 and GS-18 and the most significant detection was reported at GS-7 for benzo (a) pyrene at 381 ug/Kg, which is six times the RSCO of 61 ug/Kg.

Two pesticides either chlordane or heptachlor epoxide or both exceeded their respective NYSDEC RSCOs in 18 of the 24 samples. The highest chlordane concentration documented was 6,065 ug/Kg for location GS-4 which is 12 times the RSCO of 540 ug/Kg. At two locations, GS-4 and GS-5, heptachlor epoxide exceeded the RSCO of 2.0 ug/Kg by 100 times with concentrations of 334 ug/Kg and 358 ug/Kg respectively.

Mercury exceeded the NYSDEC RSCO of 0.1 mg/Kg in 20 of the 24 samples. The highest concentration identified was 3.568 mg/Kg for location GS-4. The RSCO for arsenic is 7.5 mg/Kg and one sample GS-6, was in excess of this level with a concentration of 9.56 mg/Kg.

Surface soil concentrations in this area in excess of RSCOs may require remedial action. It is recommended that any soil disturbance in this area should be performed in accordance with a site-specific SMP. In addition, we recommend groundwater monitoring wells be installed to evaluate groundwater concentrations around the site, specifically in the areas where significant soil exceedances were identified.

3.7.2 REC-17 Groundwater Quality

Groundwater samples were collected from six locations, GW-1 through GW-6, around the course and the following table summarizes the location and position relative to groundwater flow. Groundwater flow in the vicinity of the site is to the south-southwest. Sample locations are illustrated on Figure 1.

ID	Location	Position
GW-1	North-central side of property	Upgradient side of property
GW-2	Northeast side of property	Downgradient of Club House Area
GW-3	Central east side of property	Sidegradient of debris & drum area (REC-07) & downgradient of eastern portion of site
GW-4	Center of property	Downgradient of half of the course
GW-5	South-west side of property, South Maintenance Building area.	Downgradient of South Maintenance Area and course
GW-6	Southern edge of property near a concrete slab which may indicate a historical work area.	Downgradient of main portion of course

Groundwater samples were collected at the water table from temporary well points installed using direct push technology. To reduce sample turbidity, approximately 0.5 gallons were purged from the temporary well point at each location. The depth to water around the site is approximately 20 to 25 feet below grade. Groundwater samples were analyzed for VOCs, SVOCs, metals and inorganics, as well as pesticides and herbicides. Results are contained in Table 5 and sample locations are presented on Figure 1.

Results indicate concentrations met their respective NYSDEC standards, with the exception of nine metals: arsenic, chromium, copper, iron, manganese, sodium, nickel, lead and zinc. Samples from temporary well points are typically turbid and result in detections of metals in unfiltered groundwater samples. The elevated metals results are likely due to sediment in the sample since the metals are adhered to sediments and not actually dissolved in groundwater. However, it is recommended that further groundwater monitoring be conducted to determine if groundwater quality has been impacted by on-site activities.

4.0 SOIL MANAGEMENT & HEALTH & SAFETY PLANS

Based upon surface soil sample results that exceeded regulatory limits at 23 of the 24 locations around the site for three classes of compounds, SVOCs, metals and pesticides, preparation and implementation of a Site-Specific Soil Management Plan (SMP) is recommended for the property. The SMP should detail soil management practices in areas identified with soil contamination whenever earthwork is performed to

prevent the spread of contamination and to minimize exposure by protecting worker and patron health and safety.

The SMP will detail the handling requirements whenever soil disturbance is performed. This will include: required personal protective equipment, stockpiling or staging requirements. Depending upon the regulatory requirements, characterization of excavated soil may be required prior to backfilling to determine if off-site disposal is required. The use of engineering controls will be necessary to prevent the spread of contamination and prevent exposure.

In addition, a Site Specific Health and Safety Plan (HASP) is warranted and must be adhered to by site personnel. An important component of the HASP is communication of hazards, including meetings and notices. Education of workers and training requirements will be outlined and will include Hazardous Waste Operations and Emergency Response (HAZWOPER) training and other annual requirements. The HASP will indicate personal protective equipment requirements as well as monitoring equipment, action levels, appropriate protective measures.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The Phase II has identified environmental compliance issues as well as environmental conditions warranting further investigation and remedial action. UIC sampling indicates remedial action is warranted relative to five of ten structures sampled. There are also environmental compliance issues relative to UICs as well as storage tanks. Concentrations of contaminants significantly in excess of regulatory criteria were identified in soil; in some cases pesticides were more than 100 times the regulatory levels.

Surface soil sample results exceeded regulatory limits at 29 of the 30 locations around the site, identified relative to specific RECs or general condition assessment. Based upon these exceedances it is recommended that regulatory officials be engaged to determine the extent of remedial action that will be required. Since significant contamination of SVOCs, metals and pesticides is widespread and higher concentrations may be present that were not identified, we recommend the installation of groundwater monitoring wells and sampling to determine whether groundwater has been impacted. In addition, preparation and implementation of a Site-Specific Soil Management Plan (SMP) is recommended for the

Island Hills Golf Course. The SMP should be accompanied by a Site Specific Health and Safety Plan to communicate hazards, protect workers and outline annual training requirements.

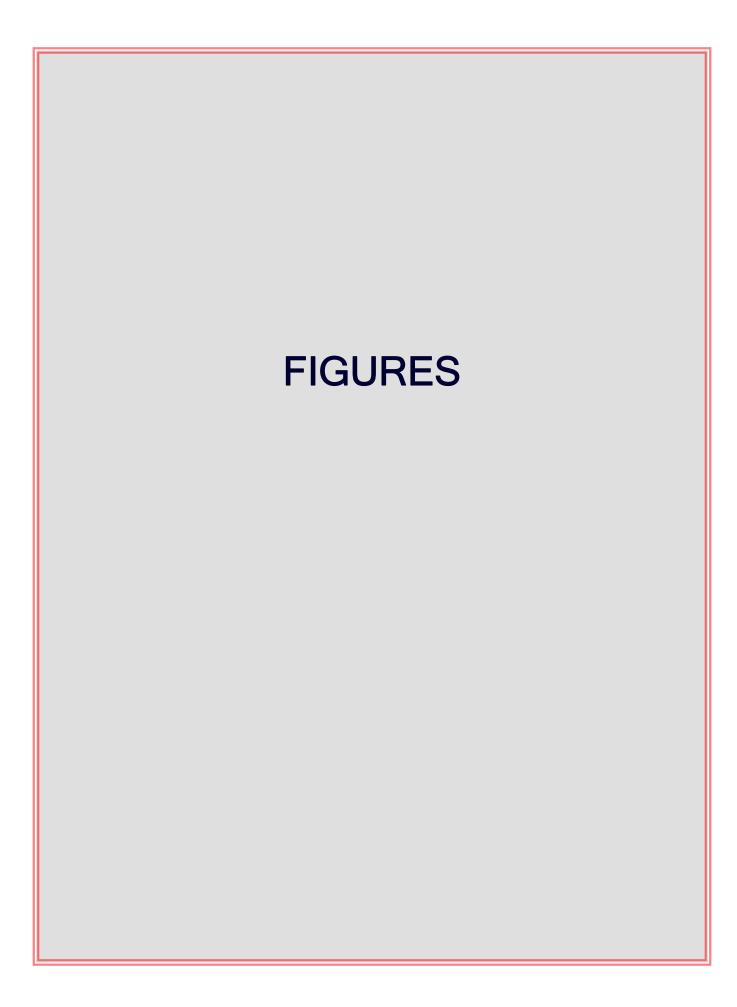
Sampling of UICs, sanitary and storm drain leaching structures and the maintenance pit, indicates remediation of structures by removal of sediments is warranted at five locations: both sanitary systems associated with the Club House on the north side of the building (SS-1 and SS-3 septic tank, the associated leaching structures could not be sampled at this time); South Maintenance Building: sanitary leaching structure, maintenance pit, and storm drain SD-4.

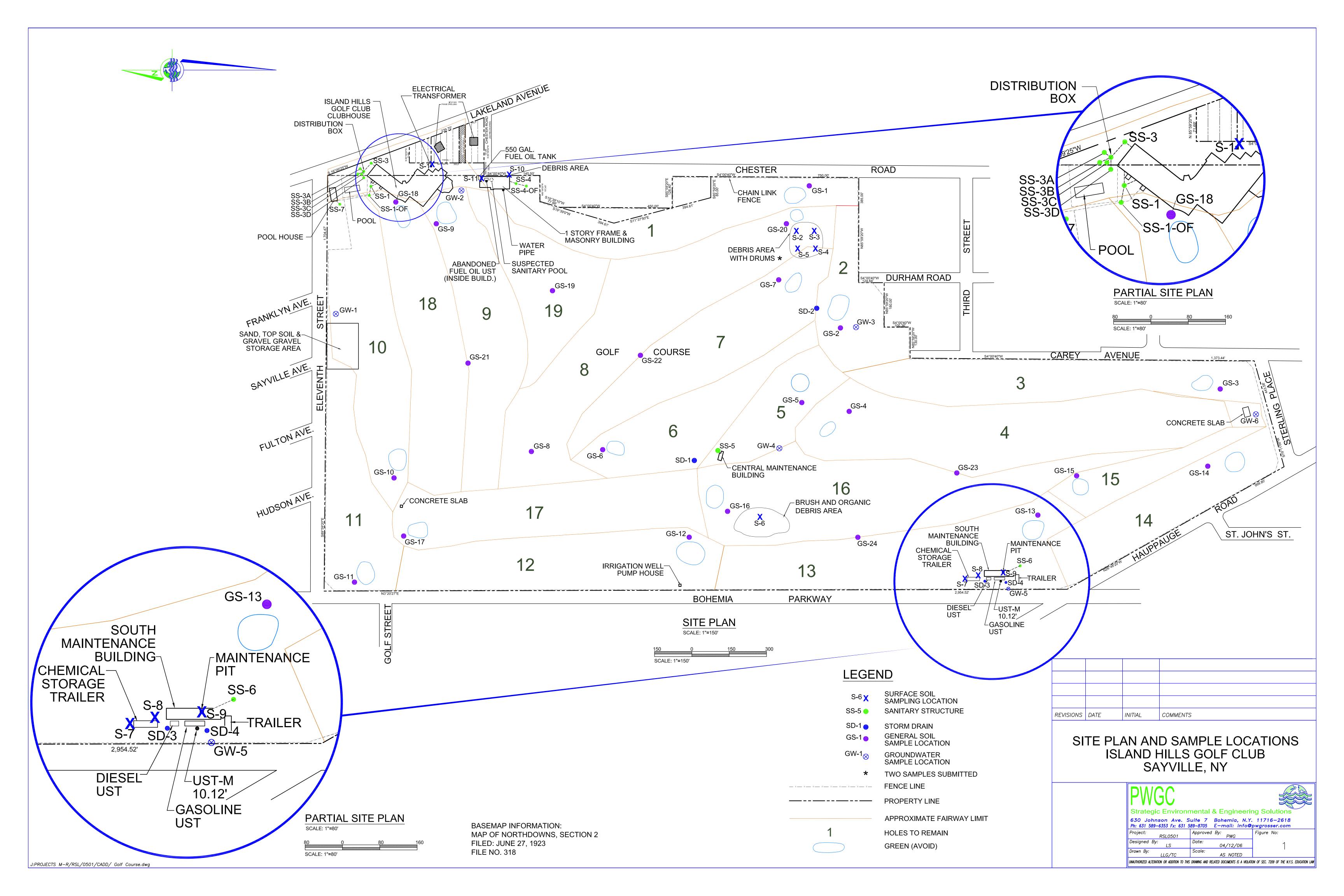
One leaching structure associated with the Central Maintenance Building and four associated with the Club House have not been sampled due to a broken cover and site access limitations. It is recommended that these structures be sampled once access is granted. Based upon site conditions it is likely that there is a former sanitary structure associated with the Pro-Shop and it is recommended that this structure be located, sampled and properly closed in accordance with SCDHS protocol.

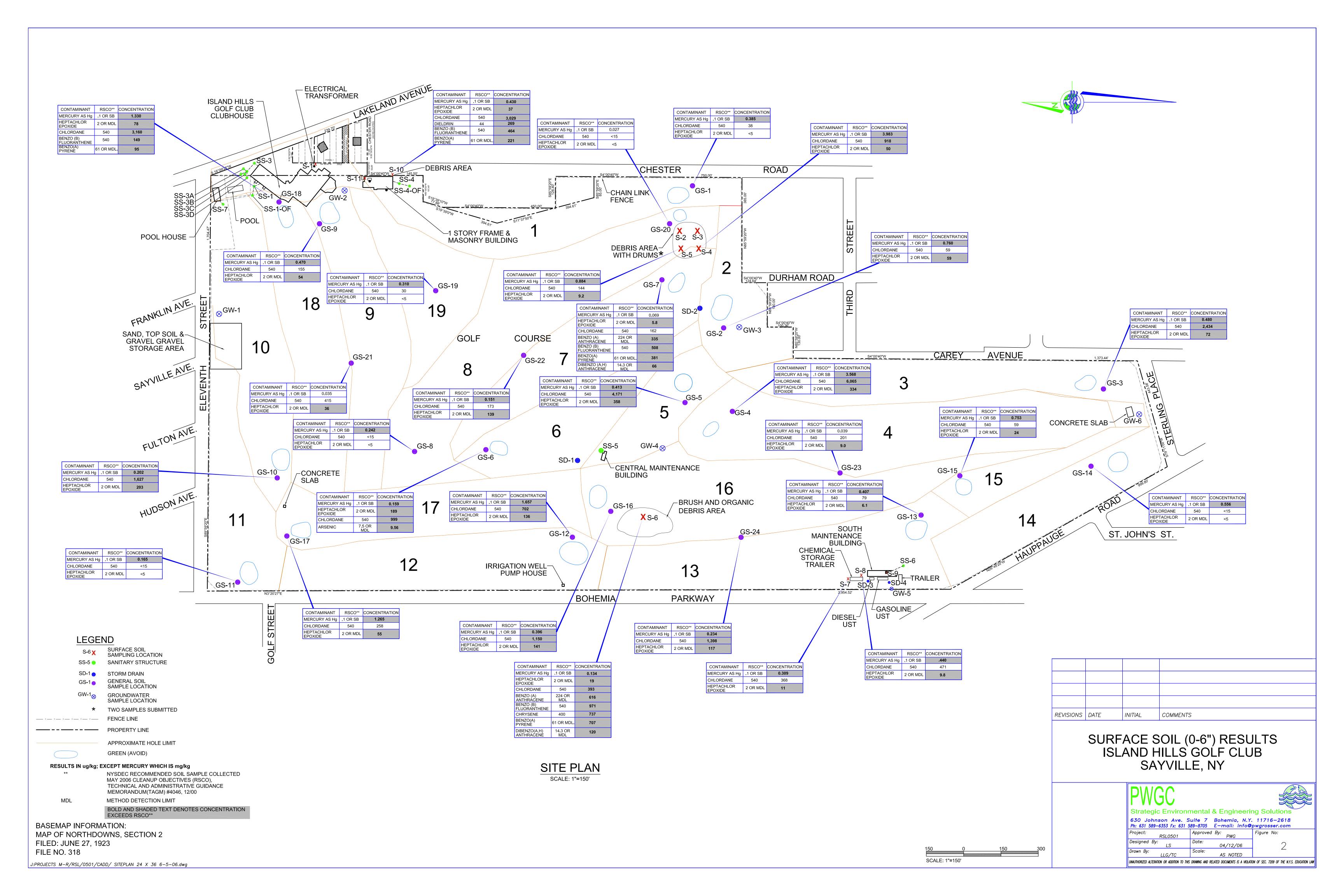
Three issues associated with petroleum storage relative to the support buildings require action. PWGC recommends that the South Maintenance Building gasoline UST as well as the other on-site petroleum storage tanks be registered with the SCDHS. An underground storage tank was located inside the Pro-Shop in the golf cart storage area and it is recommended that the tank be registered, and properly removed or abandoned to obtain closure. Abandonment will require cutting the concrete floor, excavating to expose the tank, cutting the tank open to gain access and removal and proper disposal of oil and sludge. If the UST is abandoned in place, cutting a hole through the base of the tank or installation of a monitoring well may be required by SCDHS. The UST can then be properly abandoned and a closure report submitted. If a monitoring well is required, groundwater monitoring will be necessary for a period of time (at a minimum one year). In addition, the Pro-Shop AST should be upgraded to comply with SCDHS requirements.

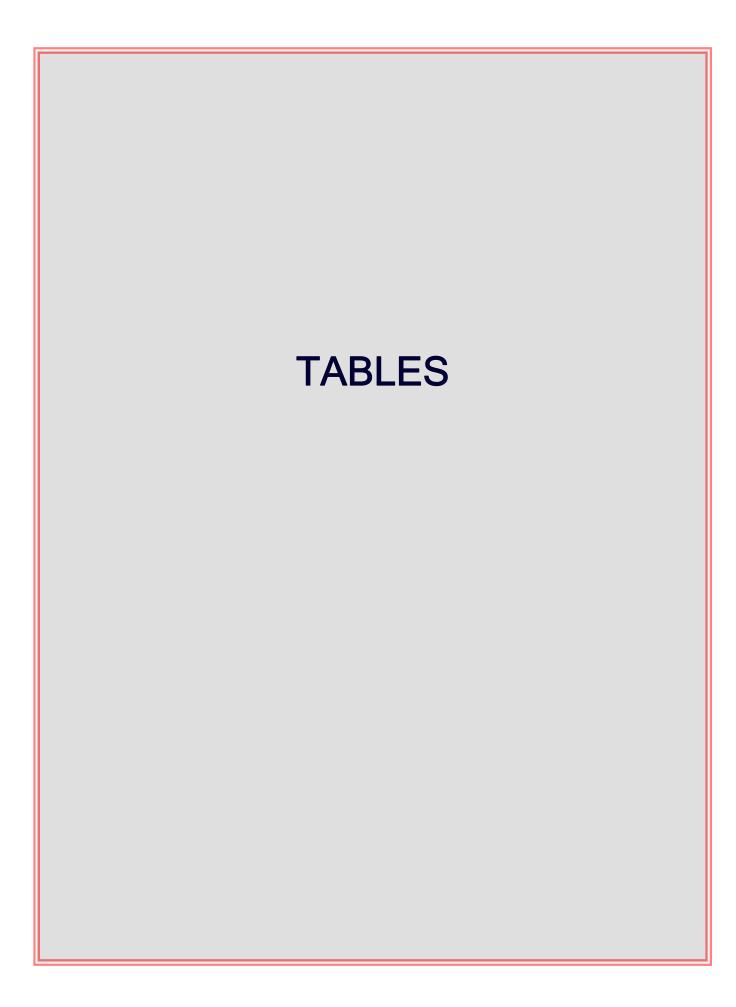
Relative to the improperly stored waste drums in the vicinity of Holes 1 and 2, it is recommended that the drums and their contents be properly disposed.

Groundwater sample results indicate concentrations met applicable regulatory criteria, with the exception of metals. As many as nine metals were detected in excess of groundwater standards in all six samples




collected. Based upon this it is recommended that further groundwater monitoring be conducted to determine if groundwater quality has been impacted by on-site activities.


To rectify environmental compliance issues as well as address environmental conditions that warrant further investigation and remedial action, costs were compiled. The estimated costs along with the major assumptions are summarized in the following table.


No	Issue	RECs	Cost	Comments/Assumptions
1	Environmental Compliance	03, 07, & 13	\$10,000 \$12,500 Plus Fines \$12,000	UST Registrations and upgrade AST. In addition to filing the registrations and fees, the SCDHS has been issuing fines for lapsed registrations. Upgrade Pro-Shop fuel oil AST. Disposal of waste drums and their contents: assume no process knowledge, characterization of standing liquid, disposal of three drums of non-hazardous
				liquid, 2 days to complete drum removal and disposal of 10 empty drums.
2	UST Abandonment	05	\$6,000 \$8,000	Fuel oil UST abandonment. Assumes 1-550 gallon UST, 1 day to complete, no liquid present, one drum of sludges, sample below UST with no contamination, backfill with clean sand and UST closure report.
3	UIC Remediation / Closure	01, 04A, 09, 10, 11, & 12	\$40,000 – \$50,000	Remediation of 10 structures: Club House systems: SS-1, SS-3 septic tank and 4 UIC structures (not sampled), Central Maintenance Bldg SS-5 (not sampled) S. Maintenance Building: maintenance pit, sanitary structure SS-6 and storm drain SD-4. Removal of sediments and clean endpoint samples obtained.
				Locate & sample former Pro-Shop Sanitary (SS-4A): assume results do not warrant cleanout, obtain SCDHS approval to backfill with clean sand and obtain closure.
4	Surface Soil Contamination	16	\$6,750,000 \$7,750,000	Remedial action for surface soil: assume excavate to 0.5 feet across site with off-site disposal and backfill.
5	Groundwater Quality	17	\$60,000 \$75,000	Groundwater monitoring: installation of 10 shallow groundwater monitoring wells, four rounds of samples and no groundwater remediation is warranted.

A more detailed cost estimate can be provided upon request.

Island Hills Golf Course, Sayville New York REC Number and Sample IDs

Table 1

Area	REC No.	REC Issue	Sample IDs			
Club House Building	01	UIC Sanitary Systems	SS-1 and SS3			
Club House Vicinity	02	Oil Stained Pad & Transformer	S-1			
	03	AST Staged on Soil	S-10			
Pro-Shop Building	04/04A	Sanitary System(s)	SS-4			
	05	UST				
Pro-Shop Building Area	05A	Storage Area	S-10			
	06	Storm Drains-2	SD-1 and SD-2			
Green	07	Landscape Debris & Waste Drums Area of Holes 1 & 2	S-2 through S-5			
	08 Landscape Debris Piles Holes 13 & 16					
Central Maintenance Building	09	Sanitary System	SS-5			
	10	Maintenance Pit	Pit-1			
	11	Sanitary System & Slop Sink	SS-6			
S. Maintenance Building	12	Storm Drains-2	SD-3 and SD-4			
	13	Gasoline UST	UST-M			
	14	Chemical Storage Trailer	S-7 and S-8			
Pool House	15	Sanitary System	SS -7			
General Conditions	General Conditions 16 Surface Soil					
General Conditions	17	Groundwater	GW-1 through GW-6			

Compound	SCDHS Action Levels (#)	SCDHS Cleanup Objectives (1)	SD-1	SD-2	SD-3	SD-4	SS-1	SS-3	SS-4	SS-6	SS-7	PIT-1
Volatile Organic Compounds by 8260	- ug/kg											
Dichlorodifluoromethane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Chloromethane	n/a	n/a	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Vinyl Chloride	400	200	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Bromomethane	n/a	n/a	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Chloroethane	400	200	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Trichlorofluoromethane	1,600	800	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,1-Dichloroethene	800	400	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Methylene Chloride	200	100	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
trans-1,2-Dichloroethene	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,1-Dichloroethane	400	200	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
2,2-Dichloropropane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
cis-1,2-Dichloroethene	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Bromochloromethane	400	200	<5	<5	< 5	<5	<5	<25	<50	<50	<5	<5
Chloroform	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,1,1-Trichloroethane	1,600	800	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Carbon Tetrachloride	1,200	600	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,1-Dichloropropene	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Benzene	120	60	<5	< 5	< 5	<5	<5	<25	<50	<50	<5	<5
1,2-Dichloroethane	200	100	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Trichloroethene	1,400	700	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,2-Dichloropropane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Dibromomethane	400	200	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Bromodichloromethane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
cis-1,3-Dichloropropene	600	300	<5	<5	< 5	<5	<5	<25	<50	<50	<5	<5
Toluene	3,000	1,500	88	<5	14	51	8	94	<50	152	<5	<5
trans-1,3-Dicholorpropene	600	300	<5	<5	< 5	<5	<5	<25	<50	<50	<5	<5
1,1,2-Trichloroethane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Tetrachloroethene	2,800	1,400	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,3-Dichloropropane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Dibromochloromethane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,2-Dibromoethane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Chlorobenzene	3,400	1,700	<5	< 5	< 5	<5	<5	9,720	<50	<50	<5	<5
1,1,1,2-Tetrachloroethane	600	300	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Ethylbenzene	11,000	5,500	<5	<5	25	24	<5	<25	<50	<50	<5	<5
Styrene	2,000	1,000	<5	<5	< 5	<5	<5	<25	<50	<50	<5	<5

Compound	SCDHS Action Levels (#)	SCDHS Cleanup Objectives (1)	SD-1	SD-2	SD-3	SD-4	SS-1	SS-3	SS-4	SS-6	SS-7	PIT-1
Bromoform	1,000	500	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Isopropylbenzene	5,200	2,600	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Bromobenzene	1,600	800	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,1,2,2-Tetrachloroethane	1,200	600	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,2,3-Trichloropropane	800	400	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
n-Propylbenzene	5,000	2,500	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
2-Chlorotoluene	3,600	1,800	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
4-Chlorotoluene	3,600	1,800	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,3,5-Trimethylbenzene	5,200	2,600	<5	<5	8	5	<5	<25	62	147	<5	<5
tert-Butylbenzene	6,800	3,400	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,2,4-Trimethylbenzene	4,800	2,400	<5	<5	31	14	<5	<25	<50	166	<5	<5
sec-Butyl benzene	10,000	5,000	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,3-Dichlorobenzene	3,200	1,600	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
p-Isopropyltoluene	7,800	3,900	58	<5	<5	<5	<5	<25	<50	57	<5	<5
1,4-Dichlorobenzene	15,000	8,000	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,2-Dichlorobenzene	15,000	8,000	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
n-Butyl benzene	6,800	3,400	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Dibromochloropropane (1,2-Dibromo-3-chloropropane)	1,000	500	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,2,4-Trichlorobenzene	6,800	3,400	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Hexachlorobutadiene	15,000	10,000	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Naphthalene	15,000	10,000	<5	<5	10	<5	<5	<25	<50	100	<5	<5
1,2,3-Trichlorobenzene	4,800	2,400	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
2-Chloroerhylvinyl Ether	,	,	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Freon 113 (1,1,2-Trichlorofluoroethane)	12,000	6,000	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
p-Diethylbenzene	7,600	3,800	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
p-Ethyltoluene	3,600	1,800	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
1,2,4,5-Tetramethylbenzene	15,000	10,000	<5	<5	<5	7	<5	<25	<50	82	<5	<5
Acetone	**	**	<50	<50	<50	<50	107	<250	<500	<500	<50	<50
Chlorofluoromethane	n/a	n/a	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
Methyl Ethyl Ketone	600	300	<10	<10	12	<10	33	<50	<100	<100	<10	<10
Methyl Isobutyl Ketone	2,000	1,000	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5
m + p Xylene	2,400 *	1,200	<10	<10	43	62	<10	<50	<100	<100	<10	<10
o-Xylene	2,400 *	1,200	<5	<5	21	24	<5	<25	<50	66	<5	<5
Methyl-Tertiary-Butyl-Ether (MTBE)	1,200	600	<5	<5	<5	<5	<5	<25	<50	<50	<5	<5

Compound	SCDHS Action Levels (#)	SCDHS Cleanup Objectives (1)	SD-1	SD-2	SD-3	SD-4	SS-1	SS-3	SS-4	SS-6	SS-7	PIT-1
Semi-Volatile Organic Compounds by	[,] 8270 - ug/kg											
Anthracene	75,000	50,000	<40	<40	<40	<40	<40	<40	<40	1,140	44	<40
Fluorene	75,000	50,000	<40	<40	<40	<40	<40	<40	<40	381	<40	<40
Phenanthrene	75,000	50,000	<40	<40	232	135	<40	<40	248	4,612	173	76
Pyrene	75,000	50,000	<40	<40	205	158	<40	<40	437	4,313	626	172
Acenaphthene	75,000	50,000	<40	<40	<40	<40	<40	<40	<40	328	<40	<40
Benzo(a)anthracene	6,000	3,000	<40	<40	76	59	<40	<40	201	2,213	447	104
Fluoranthene	75,000	50,000	46	<40	221	177	<40	<40	554	5,319	576	197
Benzo(b)fluoranthene	2,200	1,100	41	<40	141	99	<40	<40	391	2,568	478	154
Benzo(k)fluoranthene	2,200	1,100	<40	<40	50	<40	<40	<40	169	889	146	62
Chrysene	800	400	<40	<40	115	103	<40	<40	353	2,632	606	127
Benzo(a)pyrene	22,000	11,000	<40	<40	82	60	<40	<40	216	1,792	359	101
Benzo(g,h,i)perylene	75,000	50,000	<40	<40	59	58	<40	<40	233	1,039	197	130
Indeno(1,2,3-cd)pyrene	6,400	3,200	<40	<40	53	59	<40	<40	214	1,136	180	108
Dibenzo(a,h)anthracene	75,000	50,000	<40	<40	<40	<40	<40	<40	44	221	46	<40
Compound	SCDHS Action Levels (#)	SCDHS Cleanup Objectives (1)	SD-1	SD-2	SD-3	SD-4	SS-1	SS-3	SS-4	SS-6	SS-7	PIT-1
Priority Pollutant Metals mg/kg												
Silver as Ag	100	5	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65
Arsenic as As	25	7.5	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	3.38
Beryllium as Be	8	1.6	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65
Cadmium as Cd	10	1	<1.00	<1.00	<1.00	<1.00	1.54	<1.00	1.37	<1.00	<1.00	1.14
Chromium as Cr	100	10	2.36	<1.65	5.39	5.01	6.93	6.50	3.01	3.59	4.54	20.9
Copper as Cu	500	25	3.85	3.00	11.7	8.75	310	112	101	26.1	64.4	32
Mercury as Hg	2	0.1	0.045	0.022	0.218	4.805	0.100	<0.020	1.349	2.039	0.274	0.391
Nickel as Ni	1,000	13	1.83	<1.65	1.96	1.84	5.02	5.75	2.38	<1.65	2.79	7.78
Lead as Pb	400	100	6.68	2.13	7.84	6.69	392	24.4	25.5	10.1	46.7	47.0
Compound	RSC	O **	SD-1	SD-2	SD-3	SD-4	SS-1	SS-3	SS-4	SS-6	SS-7	PIT-1
Pesticides by EPA Method 8081/8082	- ug/kg											
Aldrin	3	8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
a BHC	10	00	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
b BHC	20	00	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
d BHC	30	00	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Lindane	6	0	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

UIC Results Volatile, Semi-Volatile, Metals and Pesticides/Herbicides

Compound	RSCO **	SD-1	SD-2	SD-3	SD-4	SS-1	SS-3	SS-4	SS-6	SS-7	PIT-1
Chlordane	540	24	49	108	963	24	<15	102	12,505	31	510
p,p-DDD	2,900	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5
p,p-DDE	2,100	<5	<5	<5	13	<5	<5	<5	14	<5	7.8
p,p-DDT	2,100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Dieldrin	44	<5	<5	<5	<5	<5	<5	<5	<5	<5	14
Endosulfan 1	800	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Endosulfan 2	800	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Endosulfan Sulfate	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Endrin	100	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5
Endrin Aldehyde	n/a	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5
Heptachlor	140	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Heptachlor Epoxide	2 or MDL	<5	<5	<5	22	<5	<5	<5	<5	<5	9.1
4,4' Methoxychlor	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toxaphene	n/a	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
Endrin Ketone	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Compound	RSCO **	SD-1	SD-2	SD-3	SD-4	SS-1	SS-3	SS-4	SS-6	SS-7	PIT-1
Herbicides by EPA Method 8151 - ug/kg											
Dicamba	n/a	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
2,4-D	500	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Silvex (2,4,5-TP)	700	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
2,4,5-T	1,900	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
2,4-DB	n/a	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Dacthal	n/a	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

Notes:

- (#) Suffolk County Dept. of Health Services, Article 12 SOP 9-95, Action Levels, July 1998.
- (1) Suffolk County Dept. of Health Services, Article 12 SOP 9-95, Cleanup Objectives, July 1998.

All units are ug/Kg, except metals which are mg/kg.

n/a - Not available

MDL - Method detection limit

NS - Not sampled

Bold/Shaded text denotes RSCO and SCDHS Action Level exceedance.

^{**}NYSDEC Recommended Soil Cleanup Objectives (RSCO), Technical and Administrative Guidance Memorandum (TAGM) #4046, 12/00

Surface Soil Results 0-6" Volatile, Semi-Volatile, Metals and Pesticides/Herbicides

Compound Volatile Organic Compounds by 8	RSCO**	GS-1	GS-2	000																											
Volatile Organic Compounds by 8			G3-2	GS-3	GS-4	GS-5	GS-6	GS-7	GS-8	GS-9	GS-10	GS-11	GS-12	GS-13	GS-14	GS-15	GS-16	GS-17	GS-18	GS-19	GS-20	GS-21	GS-22	GS-23	GS-24	S-4	S-5	S-6	S-7	S-8	S-10
	260 - ug/kg																														
Dichlordifluoromethane	n/a	<5	<5 -5	<5 -r	<5	<5 	<5 	<5	<5 -r5	<5 	<5	<5 -r5	< <u>5</u>	<5 	<5 	<5 	<5	<5 	<5 	<5	<5 -r	<5 	<5	<5 45	<5 	<5 	<5 45	<5 -r	<5 	<5 45	<10 <10
Chloromethane Vinyl Chloride	n/a 200	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10
Bromomethane	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
Chloroethane	200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
Trichlorofluoromethane	n/a	<5	<5 <5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	<5	<10
1,1 Dichloroethene Methylene Chloride	300 50 or MDL	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
t-1,2-Dichloroethene	200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
1,1 Dichloroethane	300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
2,2-Dichloropropane c-1,2-Dichloroethene	n/a 200	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
Bromochloromethane	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
Chloroform	400	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
111 Trichloroethane	700	<5 	<5 	<5 -r	<5 -45	<5	<5 	<5	<5 -5	<5 	<5	<5 -r5	<5	<5 	<5 -15	<5 	<5	<5 	<5 	<5	<5 -r	<5 	<5	<5 	<5 -5	<5	<5	<5 -r	<5	<5	<10
Carbon Tetrachloride 1,1-Dichloropropene	800 n/a	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
Benzene	60 or MDL	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
1,2 Dichloroethane	20 or MDL	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
1,2 Dibromoethane Trichloroethylene	n/a n/a	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
1,2 Dichloropropane	n/a	<5	<5	<5 <5	<5	<5 <5	<5	<5	<5 <5	<5	<5	<5 <5	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5	<5	<5 <5	<5	<5 <5	<5 <5	<5	<5 <5	<10
Dibromomethane	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
Bromodichloromethane	n/a	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10
c-1,3Dichloropropene Toluene	240 1,500	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
t-1,3Dichloropropene	240	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<10
112 Trichloroethane	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<10
Tetrachloroethene 1,3-Dichloropropane	1,300 n/a	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
Dibromochloropropane	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
1,2-Dibromoethane	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
Chlorobenzene 1112Tetrachloroethane	1,100 n/a	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
Ethyl Benzene	5,500	<5	<5 <5	<5 <5	<5	<5 <5	<5	<5	<5 <5	<5	<5	<5	<5 <5	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5 <5	<5	<5 <5	<5 <5	<5	<5 <5	<5	<5	<10
Styrene	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
Bromoform	n/a	<5	<5 .5	<5	<5 .5	<5 .5	<5 .5	<5 -5	<5 .5	<5 .5	<5 .5	<5 .5	<5	<5 .5	<5 .5	<5 	<5 	<5 .5	<5 .5	<5 .5	<5	<5 .5	<5 -5	<5 -5	<5 .5	<5	<5 .5	<5 .5	<5	<5	<10
Isopropylbenzene Bromobenzene	10 n/a	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
1122Tetrachloroethane	400	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
123-Trichloropropane	3 or MDL	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
n-Propylbenzene 2-Chlorotoluene	3,700 n/a	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
4-Chlorotoluene	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
135-Trimethylbenzene	3,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
tert-Butylbenzene	10	<5 	<5 -5	<5 -r	<5	<5	<5 -r	<5	<5 -5	<5 -r	<5	<5	<5	<5	<5 	<5 	<5	<5 -r	<5 	<5	<5 -r	<5 	<5	<5 	<5 -5	<5	<5	<5 -r	<5 	<5 -45	<10
124-Trimethylbenzene sec-Butylbenzene	10,000 10	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
1,3 Dichlorobenzene (v)	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
p-Isopropyltoluene	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 -5	<5	<5	<5	< 5	<5	<5	<5 -5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<10
1,4 Dichlorobenzene (v) 1,2 Dichlorobenzene (v)	1,800 1.100	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
n-Butylbenzene	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
1,2-Dibromo-3-Chloropropane	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5 	<5	<5 -5	<5	<5 	<5	<5 -5	<5 -5	<5 	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
124-Trichlorobenzene (v) Hexachlorobutadiene	8,300 n/a	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
Naphthalene(v)	n/a	<5	<5	<5	<5	<5 <5	<5	<5	<5 <5	<5	<5	<5 <5	<5 <5	<5	<5 <5	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	<5 <5	<10
123-Trichlorobenzene	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
2-Chloroethylvinyl Ether Freon 113	n/a 1,300	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
p Diethylbenzene	n/a	<5	<5 <5	<5	<5	<5 <5	<5	<5	<5 <5	<5	<5	<5	<5 <5	<5	<5	<5 <5	<5 <5	<5	<5 <5	<5 <5	<5	<5	<5	<5	<5 <5	<5	<5 <5	<5 <5	<5	<5 <5	<10
p-Ethyltoluene	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
1245 Tetramethylbenz	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
Acetone Chlorodifluoromethane	100 n/a	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<50 <5	<100 <10
Methyl Ethyl Ketone	n/a	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<20
Methylisobutylketone	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
m + p Xylene	n/a	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<20
o Xylene ter.ButvlMethvlEther	600 120	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10 <10
Semi-Volatile Organic Compound			ŭ	<u> </u>	<u>. </u>		J		-	-		-						-				J				<u> </u>			ŭ		
Anthracene	50,000	<40	<40	<40	<40	<40	<40	58	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	135	<40	<40	<60
Fluorene	50,000	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<60	<40	<40	<60
Phenanthrene Pyrene	50,000 50,000	<40 <40	<40 76	<40 <40	<40 <40	<40 <40	<40 <40	199 509	<40 <40	<40 <40	<40 <40	<40 <40	73 164	<40 <40	<40 <40	<40 <40	<40 <40	<40 43	<40 <40	47 72	<40 <40	538 1,036	<40 45	<40 <40	204 414						
Acenaphthene	50,000	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<60	<40	<40	<60
Benzo(a)anthracene	224 or MDL	<40	<40	<40	<40	<40	<40	335	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	79	<40	<40	<40	<40	<40	<40	<40	<40	616	<40	<40	209

Surface Soil Results 0-6" Volatile, Semi-Volatile, Metals and Pesticides/Herbicides

Compound	RSCO**	GS-1	GS-2	GS-3	GS-4	GS-5	GS-6	GS-7	GS-8	GS-9	GS-10	GS-11	GS-12	GS-13	GS-14	GS-15	GS-16	GS-17	GS-18	GS-19	GS-20	GS-21	GS-22	GS-23	GS-24	S-4	S-5	S-6	S-7	S-8	S-10
Fluoranthene	50,000	<40	83	<40	<40	<40	<40	560	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	200	<40	<40	<40	<40	52	<40	94	<40	1,212	59	<40	527
Benzo(b)fluoranthene	61 or MDL	<40	53	<40	<40	<40	<40	508	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	149	<40	<40	<40	<40	43	<40	57	<40	971	<40	<40	464
Benzo(k)fluoranthene	610 or MDL	<40	<40	<40	<40	<40	<40	181	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	60	<40	<40	<40	<40	<40	<40	<40	<40	341	<40	<40	136
Chrysene	400	<40	48	<40	<40	<40	<40	395	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	138	<40	<40	<40	<40	<40	<40	53	<40	737	<40	<40	373
Benzo(a)pyrene	61 or MDL	<40	45	<40	<40	<40	<40	381	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	95	<40	<40	<40	<40	<40	<40	<40	<40	707	<40	<40	221
Benzo(ghi)perylene	50,000	<40	<40	<40	<40	<40	<40	287	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	79	<40	<40	<40	<40	<40	<40	<40	<40	448	<40	<40	264
Indeno(1,2,3-cd)pyrene	3,200	<40	41	<40	<40	<40	<40	285	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	86	<40	<40	<40	<40	<40	<40	<40	<40	491	<40	<40	257
Dibenzo(a,h)anthracene	14.3 or MDL	<40	<40	<40	<40	<40	<40	66	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	120	<40	<40	<60
Priority Pollutant Metals - mg/kg																															
Silver as Ag	SB	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65
Arsenic as As	7.5 or SB	2.7	4.03	4.1	<1.65	2.57	9.56	2.58	3.4	2.73	5.15	2.16	2.48	3.80	4.82	3.15	2.15	2.66	3.03	<1.65	1.95	2.70	2.00	2.92	2.61	2.25	1.94	2.62	<1.65	3.24	<1.65
Beryllium as Be	0.16 or SB	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65
Cadmium as Cd	10	<1.00	<1.00	1.02	<1.00	<1.00	5.51	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Chromium as Cr	50	5.78	6.91	9.58	15.8	16.9	11.4	5.48	3.69	6.54	11.9	7.1	3.88	6.19	3.87	8.22	9.35	5.37	10.4	2.56	4.97	4.93	6.89	6.78	10.3	7.53	4.05	8.63	3.87	9.73	5.42
Copper as Cu	25 or SB	3.11	6.16	3.07	3.19	9.07	6.35	11.0	1.98	3.91	4.88	3.67	3.97	3.54	2.76	6.61	2.15	3.62	4.04	2.73	4.72	3.55	4.73	4.10	4.04	4.8	5.69	10.40	4.80	5.88	15.4
Mercury as Hg	.1 or SB	0.385	0.760	0.480	3.568	0.413	0.159	0.069	0.242	0.470	0.202	0.165	1.657	0.407	0.556	0.753	0.396	1.265	1.330	0.310	0.027	0.035	0.151	0.039	0.234	3.983	0.884	0.134	0.309	0.440	0.430
Nickel as Ni	13 or SB	2.41	2.47	2.46	3.17	2.97	2.32	3.86	2.19	3.47	3.14	3.00	<1.65	2.14	<1.65	3.46	1.92	2.34	4.62	<1.65	3.01	2.97	3.56	2.48	2.54	2.92	2.69	4.87	1.69	2.78	3.70
Lead as Pb^	4-61 or SB	8.19	26.4	11.7	9.88	21.1	43.1	27.7	5.99	6.96	19.9	6.15	18.9	6.49	13.1	6.52	6.88	13.0	7.43	7.78	4.00	26.3	19.2	17.2	15.3	19.2	26.9	21.8	4.87	13.1	36.0
Pesticides by EPA Method 8081/80)82 -ug/kg																														
Aldrin	38	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
a BHC	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
b BHC	200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
d BHC	300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Lindane	n/a	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlordane	540	38	59	2,434	6,065	4,171	999	162	<15	155	1,627	<15	702	79	<15	59	1,150	258	3,160	30	<15	415	173	201	1,398	918	144	393	368	471	3,029
p,p-DDD	2,900	<5	<5	<5	<5	<5	<5	6.9	<5	<5	<5	<5	14	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
p,p-DDE	2,100	<5	14	<5	21	18	<5	8.5	<5	<5	<5	<5	38	<5	<5	<5	9.5	<5	7.1	<5	<5	<5	14	6.6	<5	<5	15	10	11	6.6	<5
p,p-DDT	2,100	<5	11	5.2	16	40	<5	26	<5	<5	<5	<5	24	<5	<5	<5	9.9	<5	<5	<5	<5	<5	14	<5	9.5	10	29	<5	<5	9.0	7.7
Dieldrin	44	<5	<5	<5	<5	6.8	5.9	7.0	<5	<5	6.4	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	269
Endosulfan 1	800	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Endosulfan 2	800	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Endosulfan Sulfate	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5
Endrin	100	<5	<5 .5	<5	<5	<5	<5	<5	<5	<5	<5	<5 .5	<5 	<5	<5 .5	<5 .5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 .5	<5	<5 .5	<5 .5	<5 .5	<5 .5
Endrin Aldehyde Heptachlor	n/a 140	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
-1				1																											
Heptachlor Epoxide	2 or MDL	<5	59	72	334	358	189	5.8	<5	54	203	<5	136	6.1	<5	24	141	55	78	<5 <5	<5	36	139	9.0	117	50	9.2	19	11	9.8	37 <5
4,4' Methoxychlor Toxaphene	n/a n/a	<5 <200	<5 <200	<5 <200	6.7 <200	5.7 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200	<5 <200								
Endrin Ketone	n/a n/a	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5	<200 <5
Herbicides by EPA Method 8151 - I		```		_ ``	_ ^>		```	```	``	``	``	_ ``	``	``	~5	```	_ ``	``	_ ``	``	_ ``	```	_ ``	_ ``	_ ``	~5	``	```	~5	``	``
	n/a	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Dicamba 2,4-D	n/a 500	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50
Silvex (2,4,5-TP)	700	<50	<50 <50	<50 <50	<50 <50	<50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50								
2.4.5-T	1.900	<50 <50	<50 <50	<50	<50	<50	<50	<50	<50	<50	<50 <50	<50	<50	<50	<50	<50	<50	<50 <50	<50 <50	<50	<50 <50	<50	<50	<50	<50	<50 <50	<50	<50	<50	<50	<50
2.4-DB	n/a	<50 <50	<50 <50	<50	<50	<50 <50	<50 <50	<50	<50	<50	<50	<50	<50	<50	<50	<50 <50	<50	<50	<50	<50	<50	<50 <50	<50	<50	<50 <50	<50	<50	<50 <50	<50	<50	<50
Dacthal	n/a	<50 <50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50 <50	<50	<50 <50	<50	<50	<50	<50	<50	<50 <50	<50	<50	<50	<50	<50	<50 <50	<50	<50	<50
5 4 5 4 1 4 1	11/4	٠٥٥	-50	-500	100	.00	.00	-50	-50	-50	-50	-50	.00	-50	-50	-00	-50	-50	-50	-50	-50	-50	-50	-50	-00	-50	-50	-50	.50	.00	-50

Notes:
n/a - Not available
MDL - Method detection limit
Bold/Shaded - indicates exceedance of RSCO.
"NYSDEC Recommended Soil Cleanup Objectives (RSCO), Technical and Administrative Guidance Memorandum (TAGM) #4046, 12/00.

Petroleum Storage Tank Sample Results Volatile and Semi-Volatile

Compound	RSCO**	S-11	UST-M
Volatile Organic Compounds	by EPA Method 8021 -	ug/kg	
ter.ButylMethylEther	120	<5	<5
Benzene	60 or MDL	<5	<5
n-Butylbenzene	10	<5	<5
sec-Butylbenzene	10	<5	<5
tert-Butylbenzene	10	<5	<5
Isopropylbenzene	10	<5	<5
p-Isopropyltoluene	n/a	<5	<5
n-Propylbenzene	3,700	<5	<5
Ethyl Benzene	5,500	<5	<5
Naphthalene(v)	n/a	<5	<5
Toluene	1,500	<5	<5
124-Trimethylbenzene	10,000	<5	<5
135-Trimethylbenzene	3,300	<5	<5
m + p Xylene	n/a	<10	<10
o Xylene	600	<5	<5
Semi-Volatile Organic Compo	ounds by EPA Method 8	270 - ug/kg	
Naphthalene(v)	13,000	<40	<5
Anthracene	50,000	<40	<5
Fluorene	50,000	<40	<5
Phenanthrene	50,000	151	<5
Pyrene	50,000	179	<5
Acenaphthene	50,000	<40	<5
Benzo(a)anthracene	224 or MDL	98	<5
Fluoranthene	50,000	230	<5
Benzo(b)fluoranthene	61 or MDL	138	<5
Benzo(k)fluoranthene	610 or MDL	45	<5
Chrysene	400	124	<5
Benzo(a)pyrene	61 or MDL	87	<5
Benzo(ghi)perylene	50,000	58	<5
Indeno(1,2,3-cd)pyrene	3,200	58	<5
Dibenzo(a,h)anthracene	14.3 or MDL	<40	<5

Notes:

n/a - Not available

MDL - Method detection limit

Bold/Shaded - indicates exceedance of RSCO

"NYSDEC Recommended Soil Cleanup Objectives (RSCO), Technical and Administrative Guidance Memorandum (TAGM) #4046, 12/00.

Compound	NYSDEC Groundwater Standards**	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6
Volatile Organic Compounds by	y EPA Method 524.2 - ug/L						
Acetone	50*	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Benzene	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromobenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromochloromethane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromodichloromethane	50*	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromoform	50*	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromomethane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-Butanone	50	1.44	<1.00	<1.00	<1.00	<1.00	<1.00
n-Butylbenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
sec-Butylbenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
tert-Butylbenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Carbon Disulfide	n/a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chlorobenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chlorodifluoromethane	n/a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chloroethane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chloroform	7	<0.50	1.70	<0.50	<0.50	<0.50	<0.50
Chloromethane	5	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50
2-Chlorotoluene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
4-Chlorotoluene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chlorodibromomethane	50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dibromo-3-Chloropropane	0.04	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,2 Dibromoethane	0.0006	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dibromomethane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,2 Dichlorobenzene (v)	3	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50
1,3 Dichlorobenzene (v)	3	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,4 Dichlorobenzene (v)	3	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dichlordifluoromethane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1 Dichloroethane	4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,2 Dichloroethane	0.6	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50
1,1 Dichloroethene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
c-1,2-Dichloroethene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
t-1,2-Dichloroethene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,2 Dichloropropane	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,3-Dichloropropane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Compound	NYSDEC Groundwater Standards**	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6
2,2-Dichloropropane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloropropene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
c-1,3Dichloropropene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
t-1,3Dichloropropene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethyl Benzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Hexachlorobutadiene	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-Hexanone	50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Isopropylbenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
p-Isopropyltoluene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methylene Chloride	5	<0.50	<0.50	<0.50	<0.50	0.52	<0.50
Methylisobutylketone	n/a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
ter.ButylMethylEther	10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Naphthalene(v)	10*	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
n-Propylbenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1112Tetrachloroethane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1122Tetrachloroethane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Tetrachloroethene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	5	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
123-Trichlorobenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
124-Trichlorobenzene (v)	5	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50
111 Trichloroethane	5	<0.50	<0.50	<0.50	<0.50	0.74	<0.50
112 Trichloroethane	1	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50
Trichloroethylene	5	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50
Trichlorofluoromethane	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
123-Trichloropropane	0.04	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
124-Trimethylbenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
135-Trimethylbenzene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Vinyl Chloride	2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
m + p Xylene	5	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
o Xylene	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Semi-Volatile Organic Compounds by EPA Method 525.5 - ug/L							
Hexachlorobenzene	0.04	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bis(2-ethylhexyl)phthalate	5	<1.0	1.8	3.8	<1.0	<1.0	<1.0
Benzo(a)pyrene	ND	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Pentachlorophenol	1°	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8

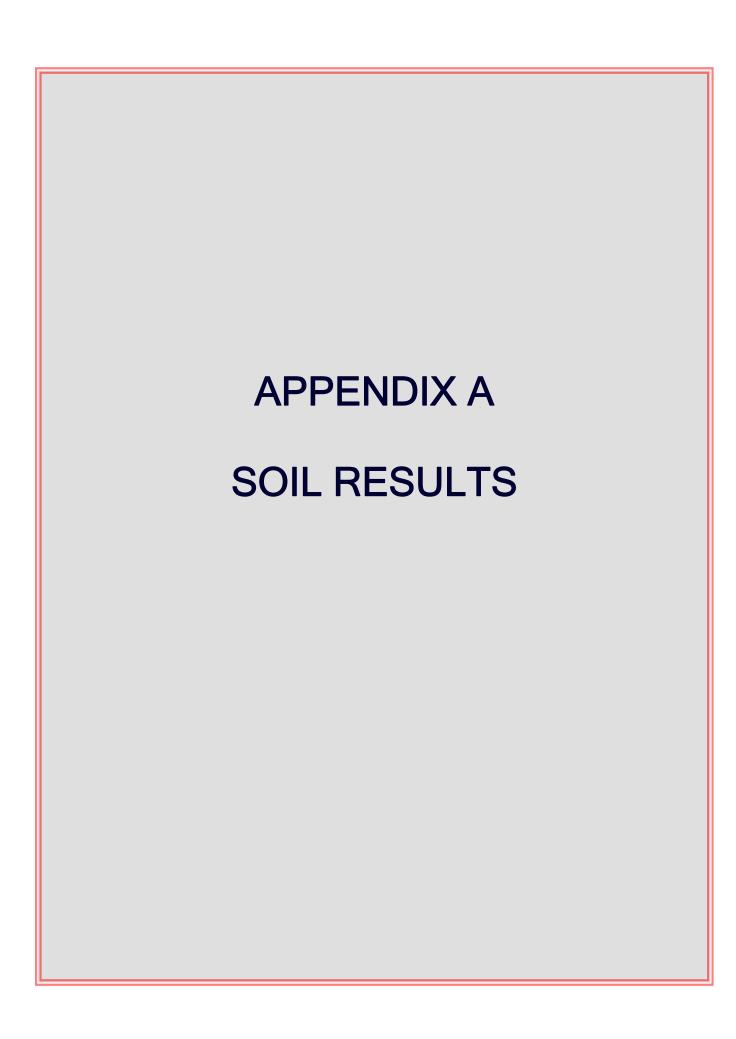
	1							
Compound	NYSDEC Groundwater Standards**	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	
Butachlor	3.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Bis (2-Ethylhexyl) Adipate	20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Hexachlorocyclopentadiene	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Priority Pollutant Metals ug/L								
Silver as Ag	0.050	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Aluminum as Al	n/a	28.3	29.3	37.6	17.0	14.6	6.51	
Arsenic as As	0.025	0.45	<0.05	<0.05	<0.05	<0.05	<0.05	
Barium as Ba	1.000	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
Beryllium as Be	0.003	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Calcium as Ca	n/a	21.2	18.6	14.8	10.5	12.1	11.6	
Cadmium as Cd	0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Cobalt as Co	n/a	0.15	<0.05	0.09	<0.05	<0.05	<0.05	
Chromium as Cr	0.050	1.86	0.28	0.38	0.33	0.31	0.09	
Copper as Cu	0.200	0.97	0.32	0.31	0.11	0.26	0.10	
Iron as Fe	0.500	117	75.8	106	65.3	72.5	26.1	
Mercury as Hg	0.0007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Potassium as K	n/a	4.95	3.33	8.98	5.99	5.69	3.35	
Magnesium as Mg	35.000	7.75	7.24	9.11	6.65	5.11	5.13	
Manganese as Mn	0.300	5.76	1.72	12.0	2.52	2.27	0.80	
Molybdenum	n/a	0.30	0.17	<0.05	0.09	0.11	<0.05	
Sodium as Na	20.000	39.9	9.87	15.6	10.5	41.3	13.3	
Nickel as Ni	0.100	1.21	0.16	0.20	0.14	0.17	<0.05	
Lead as Pb	0.025	0.047	0.046	0.058	0.022	0.025	<0.05	
Antimony as Sb	0.003	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.005	
Selenium as Se	0.010	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Thallium as T1	0.0005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vanadium as V	n/a	0.08	0.10	0.08	<0.05	<0.05	< 0.05	
Zinc as Zn	2.000	6.69	1.34	1.18	1.13	1.59	0.24	
Inorganics mg/L	Inorganics mg/L							
Chloride	250	62	15	24	17	55	23	
Sulfate as SO4	250	44	63	56	67	50	59	
Ammonia as N	20	<1.0	<1	<1	<1.0	<1	<1	
Nitrate as N	100	<1.0	<1.0	7.0	2.6	2.0	1.9	
Nitrite as N	100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Compound	NYSDEC Groundwater Standards**	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6
Bromide	200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Orthophosphate as P	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Fluride, Total	15	<1.0	1.3	<1.0	<1.0	<1.0	<1.0
Pesticides by EPA Method 608,	508/551 - ug/L						
Aldrin	ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
a BHC	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
b BHC	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
d BHC	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Lindane	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chlordane	0.5	0.26	<0.02	<0.02	<0.02	<0.02	<0.02
p,p-DDD	0.3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
p,p-DDE	0.2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
p,p-DDT	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	0.004	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan 1	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan 2	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan Sulfate	n/a	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Endrin	ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin Aldehyde	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin Ketone	5	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Heptachlor	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
4,4' Methoxychlor	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Toxaphene	0.06	<20	<20	<20	<20	<20	<20
Aroclor 1016	0.09*	<20	<20	<20	<20	<20	<20
Aroclor 1221	0.09*	<20	<20	<20	<20	<20	<20
Aroclor 1232	0.09*	<20	<20	<20	<20	<20	<20
Aroclor 1242	0.09*	<20	<20	<20	<20	<20	<20
Aroclor 1248	0.09*	<20	<20	<20	<20	<20	<20
Aroclor 1254	0.09*	<20	<20	<20	<20	<20	<20
Aroclor 1260	0.09*	<20	<20	<20	<20	<20	<20
Alachlor	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Atrazine	7.5	<2	<2	<2	<2	<2	<2
Metolachlor	n/a	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Metribuxin	n/a	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Propachlor	35	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Groundwater Results Volatile, Semi-Volatile, Metals and Pesticides/Herbicides

Compound	NYSDEC Groundwater Standards**	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6
Simazine	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dibromoethane	0.0006	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
1,2-Dibromo-3-Chlorpropane	0.04	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Herbicides by EPA Method 515 - ug/L							
Dalapon	50	<20	<20	<20	<20	<20	<20
Dicambia	0.44	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-4-D	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,4,5-TP (Silvex)	0.26	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dinoseb	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Picloram	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Perchlorate by EPA Method 314	l - ug/l	•	-	-	•	-	
Perchlorate	n/a	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0

Notes:


* - Guidance Value

n/a - Not available

** - New York State Ambient Water Quality Standards

Bold/Shaded - indicates exceedance of the NYSDEC Groundwater Standard

ND - Not Detectable

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-1)
Date received: 5/24/06	Laboratory ID: 1109705
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

4 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-1)
Date received: 5/24/06	Laboratory ID: 1109705
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	•
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	_
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	< 5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

5 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/24/06	(GS-1) Laboratory ID: 1109705
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-1)
Date received: 5/24/06	Laboratory ID: 1109705
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.70
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	5.78
COPPER, Cu	1.65 mg/kg	3.11
MERCURY, Hg	0.020 mg/kg	0.385
NICKEL, Ni	1.65 mg/kg	2.41
LEAD, Pb	1.65 mg/kg	8.19

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-1)		
Date received: 5/24/06	Laboratory ID: 1109705		
Date extracted: 5/30/06	Matrix: Soil		
Date analyzed: 5/30/06	ELAP #: 11693		

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
<u>δ - BHC</u>	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	
4,4'- DDD	72-54-8	5 ug/kg	38
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3		<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin		5 ug/kg	<5
Endrin aldehyde	72-20-8	5 ug/kg	< 5
	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
DL = Minimum Detection Limi	+		

Calculated on a wet weight basis

8 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-1)
Date received: 5/24/06	Laboratory ID: 1109705
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-2)
Date received: 5/24/06	Laboratory ID: 1109706
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

S.C.D.H. VOLATILES

DICHLORODIFLUOROMETHANE 75-71-8 5 ug/kg <5	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
VINYL CHLORIDE 75-01-4 5 ug/kg <5 BROMOMETHANE 74-83-9 5 ug/kg <5	DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
BROMOMETHANE 74-83-9 5 ug/kg <5 CHLOROETHANE 75-00-3 5 ug/kg <5	CHLOROMETHANE	74-87-3	5 ug/kg	<5	
CHLOROETHANE 75-00-3 5 ug/kg <5	VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5 1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	BROMOMETHANE	74-83-9	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5 1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	CHLOROETHANE	75-00-3	5 ug/kg	<5	·
METHYLENE CHLORIDE 75-09-2 5 ug/kg <5	TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
METHYLENE CHLORIDE 75-09-2 5 ug/kg <5	1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
1,1-DICHLOROETHANE 75-34-3 5 ug/kg <5	METHYLENE CHLORIDE	75-09-2		<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/kg <5	trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/kg <5	1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE 156-59-2 5 ug/kg <5	2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5 CHLOROFORM 67-66-3 5 ug/kg <5	cis-1,2-DICHLOROETHENE	156-59-2		<5	
CHLOROFORM 67-66-3 5 ug/kg <5	BROMOCHLOROMETHANE	74-97-5		<5	
1,1,1-TRICHLOROETHANE 71-55-6 5 ug/kg <5	CHLOROFORM	67-66-3		<5	
CARBON TETRACHLORIDE 56-23-5 5 ug/kg <5	1,1,1-TRICHLOROETHANE	71-55-6		<5	
BENZENE 71-43-2 5 ug/kg <5 1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	CARBON TETRACHLORIDE	56-23-5		<5	
1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
TRICHLOROETHENE 79-01-6 5 ug/kg <5 1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	BENZENE	71-43-2	5 ug/kg	<5	•
1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
DIBROMOMETHANE 74-95-3 5 ug/kg <5 BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5	TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5 cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5	1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5 TOLUENE 108-88-3 5 ug/kg <5	DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
TOLUENE 108-88-3 5 ug/kg <5 trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	cis-1,3-DICHLOROPROPENE	10061-01-5		<5	
1,1,2-TRICHLOROETHANE 79-00-5 5 ug/kg <5	TOLUENE	108-88-3	5 ug/kg	<5	
TETRACHLOROETHYLENE 127-18-4 5 ug/kg <5	trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,3-DICHLOROPROPANE 142-28-9 5 ug/kg <5	1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
DIBROMOCHLOROMETHANE 124-48-1 5 ug/kg <5 1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
DIBROMOCHLOROMETHANE 124-48-1 5 ug/kg <5 1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	1,3-DICHLOROPROPANE	142-28-9		<5	
1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	DIBROMOCHLOROMETHANE	124-48-1		<5	
CHLOROBENZENE 108-90-7 5 ug/kg <5	1,2-DIBROMOETHANE	106-93-4		<5	
ETHYLBENZENE 100-41-4 5 ug/kg <5 STYRENE 100-42-5 5 ug/kg <5	CHLOROBENZENE	108-90-7		<5	
ETHYLBENZENE 100-41-4 5 ug/kg <5 STYRENE 100-42-5 5 ug/kg <5	1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
STYRENE 100-42-5 5 ug/kg <5	ETHYLBENZENE	100-41-4		<5	
DDOMOCODM 75.05.0 5 mm/m = 55	STYRENE	100-42-5			
BROMOFORM 75-25-2 5 ug/kg <5	BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-2)
Date received: 5/24/06	Laboratory ID: 1109706
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	•
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	•
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

11 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-2)
Date received: 5/24/06	Laboratory ID: 1109706
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	76
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	83
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	53
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	48
Benzo(a)Pyrene	50-32-8	40 ug/kg	45
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	41
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-2)
Date received: 5/24/06	Laboratory ID: 1109706
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	4.03
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	6.91
COPPER, Cu	1.65 mg/kg	6.16
MERCURY, Hg	0.020 mg/kg	0.760
NICKEL, NI	1.65 mg/kg	2.47
LEAD, Pb	1.65 mg/kg	26.4

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/24/06	(GS-2) Laboratory ID: 1109706
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	DECLUTO . "
Aldrin	309-00-2	5 ug/kg	RESULTS ug/kg
α - BHC	319-84-6		<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	·	5 ug/kg	<5
	12789-03-6	15 ug/kg	59
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	14
4,4'-DDT	50-29-3	5 ug/kg	
Dieldrin	60-57-1	5 ug/kg	11
Endosulfan I	959-98-8		<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin		5 ug/kg	<5
Endrin aldehyde	72-20-8	5 ug/kg	<5
	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	59
4,4'-Methoxychlor	72-43-5	5 ug/kg	
Toxaphene	8001-35-2		<5
Endrin ketone	53494-70-5	200 ug/kg	<200
ADL = Minimum Detection Limit.		5 ug/kg	<5

Calculated on a wet weight basis

14 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-2)		
Date received: 5/24/06	Laboratory ID: 1109706		
Date extracted: 5/30/06	Matrix: Soil		
Date analyzed: 5/30/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-3)
Date received: 5/24/06	Laboratory ID: 1109709
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-3)
Date received: 5/24/06	Laboratory ID: 1109709
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

ISOPROPYLBENZENE	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
1,1,2,2-TETRACHLOROETHANE 79-34-5 5 ug/kg <5	ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <5	BROMOBENZENE	108-86-1	5 ug/kg	<5	
n-PROPYLBENZENE	1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
2-CHLOROTOLUENE 95-49-8 5 ug/kg <5	1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
4-CHLOROTOLUENE 106-43-4 5 ug/kg <5	n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg <5	2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
tert-BUTYLBENZENE 98-06-6 5 ug/kg <5 1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
sec-BUTYLBENZENE 135-98-8 5 ug/kg <5	tert-BUTYLBENZENE	98-06-6	5 ug/kg	· <5	
1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <5 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <5	P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
n-BUTYLBENZENE 104-51-8 5 ug/kg <5 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <5	n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <5 NAPHTHALENE 91-20-3 5 ug/kg <5	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
NAPHTHALENE 91-20-3 5 ug/kg <5 1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <5	NAPHTHALENE	91-20-3	5 ug/kg	<5	
FREON 113 76-13-1 5 ug/kg <5 p-DIETHYLBENZENE 105-05-5 5 ug/kg <5	1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
p-DIETHYLBENZENE 105-05-5 5 ug/kg <5 p-ETHYLTOLUENE 622-96-8 5 ug/kg <5	2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
p-ETHYLTOLUENE 622-96-8 5 ug/kg <5 1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	FREON 113	76-13-1	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
ACETONE 67-64-1 50 ug/kg <50 CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <5 METHYL ETHYL KETONE 78-93-3 10 ug/kg <10 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5 p & m-XYLENE 1330-20-7 10 ug/kg <10 o-XYLENE 1330-20-7 5 ug/kg <5	p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <5 METHYL ETHYL KETONE 78-93-3 10 ug/kg <10	1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10	ACETONE	67-64-1	50 ug/kg	<50	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
p & m-XYLENE 1330-20-7 10 ug/kg <10 o-XYLENE 1330-20-7 5 ug/kg <5	METHYL ETHYL KETONE	78-93-3		<10	
p & m-XYLENE 1330-20-7 10 ug/kg <10 o-XYLENE 1330-20-7 5 ug/kg <5		108-10-1	5 ug/kg	<5	
o-XYLENE 1330-20-7 5 ug/kg <5	p & m-XYLENE	1330-20-7		<10	
		1330-20-7		<5	
	MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-3)
Date received: 5/24/06	Laboratory ID: 1109709
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-3)
Date received: 5/24/06	Laboratory ID: 1109709
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	4.10
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	1.02
CHROMIUM, Cr	1.65 mg/kg	9.58
COPPER, Cu	1.65 mg/kg	3.07
MERCURY, Hg	0.020 mg/kg	0.480
NICKEL, Ni	1.65 mg/kg	2.46
LEAD, Pb	1.65 mg/kg	11.7

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Mishael Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-3)
Date received: 5/24/06	Laboratory ID: 1109709
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
<u>δ - BHC</u>	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	2,434
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	5.2
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	
Endrin	72-20-8	5 ug/kg	<5 -/5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5		72
Toxaphene	8001-35-2	5 ug/kg	<5
Endrin ketone	53494-70-5	200 ug/kg	<200
ADL = Minimum Detection Lim	it	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

32 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-3)
Date received: 5/24/06	Laboratory ID: 1109709
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-4)
Date received: 5/23/06	Laboratory ID: 1109676
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-4)
Date received: 5/23/06	Laboratory ID: 1109676
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	·
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-4)
Date received: 5/23/06	Laboratory ID: 1109676
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Mishael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-4)
Date received: 5/23/06	Laboratory ID: 1109676
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	15.8
COPPER, Cu	1.65 mg/kg	3.19
MERCURY, Hg	0.020 mg/kg	3.568
NICKEL, Ni	1.65 mg/kg	3.17
LEAD, Pb	1.65 mg/kg	9.88

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-4)
Date received: 5/23/06	Laboratory ID: 1109676
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	
4,4'- DDD	72-54-8	5 ug/kg	6,065 <5
4,4'-DDE	72-55-9	5 ug/kg	21
4,4'-DDT	50-29-3	5 ug/kg	16
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5 <5
Endosulfan II	33212-65-9	5 ug/kg	<5 <5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5 <5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	334
4,4'-Methoxychlor	72-43-5	5 ug/kg	6.7
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
IDL = Minimum Detection Limi			

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-4)		
Date received: 5/23/06	Laboratory ID: 1109676		
Date extracted: 5/27/06	Matrix: Soil		
Date analyzed: 5/27/06	ELAP #: 11693		

EPA METHOD 8151

CAS#	MDI	RESULTS ug/kg
		<50
		<50
		<50
		<50
		<50
1861-32-1		<50 <50
	CAS # 1918-00-9 94-75-7 93-72-1 93-76-5 94-82-6 1861-32-1	1918-00-9 50 ug/kg 94-75-7 50 ug/kg 93-72-1 50 ug/kg 93-76-5 50 ug/kg 94-82-6 50 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-5)
Date received: 5/23/06	Laboratory ID: 1109677
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg		
		j o agritg	 <5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-5)
Date received: 5/23/06	Laboratory ID: 1109677
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

ISOPROPYLBENZENE 98-82-8 5 ug/kg <5	
BROMOBENZENE 108-86-1 5 ug/kg <5 1,1,2,2-TETRACHLOROETHANE 79-34-5 5 ug/kg <5	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <5	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <5	
n-PROPYLBENZENE 103-65-1 5 ug/kg <5	
4-CHLOROTOLUENE 106-43-4 5 ug/kg <5	
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg <5	
tert-BUTYLBENZENE 98-06-6 5 ug/kg <5 1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	
sec-BUTYLBENZENE 135-98-8 5 ug/kg <5 1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	
1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <5 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	
1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <5	
n-BUTYLBENZENE 104-51-8 5 ug/kg <5	
1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <5	
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <5 NAPHTHALENE 91-20-3 5 ug/kg <5	
NAPHTHALENE 91-20-3 5 ug/kg <5	
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <5	
FREON 113 76-13-1 5 ug/kg <5 p-DIETHYLBENZENE 105-05-5 5 ug/kg <5	
FREON 113 76-13-1 5 ug/kg <5 p-DIETHYLBENZENE 105-05-5 5 ug/kg <5	
p-ETHYLTOLUENE 622-96-8 5 µg/kg <5	
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	
ACETONE 67-64-1 50 ug/kg <50	
CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <5	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10	
METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	
p & m-XYLENE 1330-20-7 10 ug/kg <10	
o-XYLENE 1330-20-7 5 ug/kg <5	
MTBE 1634-04-4 5 ug/kg <5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

11 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue		
	(GS-5)		
Date received: 5/23/06	Laboratory ID: 1109677		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-5)
Date received: 5/23/06	Laboratory ID: 1109677
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.57
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	16.9
COPPER, Cu	1.65 mg/kg	9.07
MERCURY, Hg	0.020 mg/kg	0.413
NICKEL, Ni	1.65 mg/kg	2.97
LEAD, Pb	1.65 mg/kg	21.1

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-5)		
Date received: 5/23/06	Laboratory ID: 1109677		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
<u>α - BHC</u>	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
<u>δ</u> - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	4,171
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	18
4,4'-DDT	50-29-3	5 ug/kg	40
Dieldrin	60-57-1	5 ug/kg	6.8
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	358
4,4'-Methoxychior	72-43-5	5 ug/kg	5.7
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
IDL = Minimum Detection I imit			d on a surefunction

Calculated on a wet weight basis

14 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	(GS-5) Laboratory ID: 1109677
Date extracted: 5/27/06	Matrix: Soil
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50 <50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-6)
Date received: 5/24/06	Laboratory ID: 1109712
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg ⁻	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-6)
Date received: 5/24/06	Laboratory ID: 1109712
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5
BROMOBENZENE	108-86-1	5 ug/kg	<5
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5
NAPHTHALENE	91-20-3	5 ug/kg	<5
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5
FREON 113	76-13-1	5 ug/kg	<5
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	< 5
ACETONE	67-64-1	50 ug/kg	<50
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	< 5 .
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	< 5
p & m-XYLENE	1330-20-7	10 ug/kg	<10
o-XYLENE	1330-20-7	5 ug/kg	<5
MTBE	1634-04-4	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-6)		
Date received: 5/24/06	Laboratory ID: 1109712		
Date extracted: 5/26/06	Matrix: Soil		
Date analyzed: 5/26/06	ELAP #: 11693		

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-6)
Date received: 5/24/06	Laboratory ID: 1109712
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	9.56
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	5.51
CHROMIUM, Cr	1.65 mg/kg	11.4
COPPER, Cu	1.65 mg/kg	6.35
MERCURY, Hg	0.020 mg/kg	0.159
NICKEL, Ni	1.65 mg/kg	2.32
LEAD, Pb	1.65 mg/kg	43.1

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/24/06	(GS-6)
Date extracted: 5/31/06	Laboratory ID: 1109712 Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	DECLUTO "
Aldrin	309-00-2	5 ug/kg	RESULTS ug/kg
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7		<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	···	5 ug/kg	<5
4,4'- DDD	12789-03-6	15 ug/kg	999
	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	
Endosulfan I	959-98-8	5 ug/kg	5.9
Endosulfan II	33212-65-9		<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor		5 ug/kg	<5
Heptachlor epoxide	76-44-8	5 ug/kg	<5
1 d' Mothernal	1024-57-3	5 ug/kg	189
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	
MDL = Minimum Detection Limit		<u> </u>	<5

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-6)		
Date received: 5/24/06	Laboratory ID: 1109712		
Date extracted: 5/30/06	Matrix: Soil		
Date analyzed: 5/30/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-7)
Date received: 5/24/06	Laboratory ID: 1109714
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	•
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-7)
Date received: 5/24/06	Laboratory ID: 1109714
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5
BROMOBENZENE	108-86-1	5 ug/kg	<5
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5
NAPHTHALENE	91-20-3	5 ug/kg	<5
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5
FREON 113	76-13-1	5 ug/kg	<5
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5
ACETONE	67-64-1	50 ug/kg	<50
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5
p & m-XYLENE	1330-20-7	10 ug/kg	<10
o-XYLENE	1330-20-7	5 ug/kg	<5
MTBE	1634-04-4	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

59 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-7)
Date received: 5/24/06	Laboratory ID: 1109714
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	58
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	199
Pyrene	129-00-0	40 ug/kg	509
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	335
Fluoranthene	206-44-0	40 ug/kg	560
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	508
Benzo(k)fluoranthene	207-08-9	40 ug/kg	181
Chrysene	218-01-9	40 ug/kg	395
Benzo(a)Pyrene	50-32-8	40 ug/kg	381
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	287
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	285
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	66

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-7)
Date received: 5/24/06	Laboratory ID: 1109714
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.58
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	5.48
COPPER, Cu	1.65 mg/kg	11.0
MERCURY, Hg	0.020 mg/kg	0.069
NICKEL, Ni	1.65 mg/kg	3.86
LEAD, Pb	1.65 mg/kg	27.7

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-7)
Date received: 5/24/06	Laboratory ID: 1109714
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS walles
Aldrin	309-00-2	5 ug/kg	RESULTS ug/kg
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	<5
4,4'- DDD	72-54-8		162
4,4'-DDE	72-55-9	5 ug/kg	6.9
4,4'-DDT	50-29-3	5 ug/kg	8.5
Dieldrin		5 ug/kg	26
Endosulfan I	60-57-1	5 ug/kg	7.0
	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8		<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	5.8
Toxaphene		5 ug/kg	<5
Endrin ketone	8001-35-2	200 ug/kg	<200
LIMITI KETONE	53494-70-5	5 ug/kg	<5
MDL = Minimum Detection Limit		Colouleted	

Calculated on a wet weight basis

62 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-7)	
Date received: 5/24/06	Laboratory ID: 1109714	
Date extracted: 5/31/06	Matrix: Soil	
Date analyzed: 5/31/06	ELAP #: 11693	

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-8)
Date received: 5/23/06	Laboratory ID: 1109696
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #; 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-8)
Date received: 5/23/06	Laboratory ID: 1109696
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

ISOPROPYLBENZENE	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
1,1,2,2-TETRACHLOROETHANE 79-34-5 5 ug/kg <5	ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <5	BROMOBENZENE	108-86-1	5 ug/kg	<5	
n-PROPYLBENZENE 103-65-1 5 ug/kg <5	1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
2-CHLOROTOLUENE 95-49-8 5 ug/kg <5	1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
4-CHLOROTOLUENE 106-43-4 5 ug/kg <5	n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg <5	2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
tert-BUTYLBENZENE 98-06-6 5 ug/kg <5 1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	1,2,4-TRIMETHYLBENZENE	95-63-6		<5	
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <5 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <5 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	P-ISOPROPYLTOLUENE	99-87-6		<5	
n-BUTYLBENZENE 104-51-8 5 ug/kg <5 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	1,4-DICHLOROBENZENE	106-46-7		<5	
n-BUTYLBENZENE 104-51-8 5 ug/kg <5 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <5	n-BUTYLBENZENE	104-51-8		<5	
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <5 NAPHTHALENE 91-20-3 5 ug/kg <5	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
NAPHTHALENE 91-20-3 5 ug/kg <5 1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <5	NAPHTHALENE	91-20-3	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <5	1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	·
p-DIETHYLBENZENE 105-05-5 5 ug/kg <5 p-ETHYLTOLUENE 622-96-8 5 ug/kg <5	2-CHLOROETHYLVINYL ETHER	110-75-8		<5	
p-DIETHYLBENZENE 105-05-5 5 ug/kg <5 p-ETHYLTOLUENE 622-96-8 5 ug/kg <5	FREON 113	76-13-1		<5	
p-ETHYLTOLUENE 622-96-8 5 ug/kg <5	p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	p-ETHYLTOLUENE	622-96-8		<5	
ACETONE 67-64-1 50 ug/kg <50	1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10	ACETONE	67-64-1		<50	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10	CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	METHYL ETHYL KETONE	78-93-3		<10	
p & m-XYLENE 1330-20-7 10 ug/kg <10 o-XYLENE 1330-20-7 5 ug/kg <5	METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
o-XYLENE 1330-20-7 5 ug/kg <5	p & m-XYLENE	1330-20-7		<10	
	o-XYLENE	1330-20-7		<5	
	MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

4 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-8)
Date received: 5/23/06	Laboratory ID: 1109696
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-8)
Date received: 5/23/06	Laboratory ID: 1109696
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	3.40
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	3.69
COPPER, Cu	1.65 mg/kg	1.98
MERCURY, Hg	0.020 mg/kg	0.242
NICKEL, Ni	1.65 mg/kg	2.19
LEAD, Pb	1.65 mg/kg	5.99

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

6 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-8)
Date received: 5/23/06	Laboratory ID: 1109696
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	<15
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-8)
Date received: 5/23/06	Laboratory ID: 1109696
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

CAS#	MDL	RESULTS ug/kg
1918-00-9	50 ug/kg	<50
94-75-7		<50
93-72-1		<50
93-76-5		<50
94-82-6		<50
1861-32-1		<50
	1918-00-9 94-75-7 93-72-1 93-76-5 94-82-6	1918-00-9 50 ug/kg 94-75-7 50 ug/kg 93-72-1 50 ug/kg 93-76-5 50 ug/kg 94-82-6 50 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-9)
Date received: 5/24/06	Laboratory ID: 1109718
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	;
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-9)
Date received: 5/24/06	Laboratory ID: 1109718
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	1
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-9)
Date received: 5/24/06	Laboratory ID: 1109718
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishael Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-9)
Date received: 5/24/06	Laboratory ID: 1109718
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.73
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	6.54
COPPER, Cu	1.65 mg/kg	3.91
MERCURY, Hg	0.020 mg/kg	0.470
NICKEL, Ni	1.65 mg/kg	3.47
LEAD, Pb	1.65 mg/kg	6.96

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010

Calculated on a wet weight basis

Maria de la companya de la companya

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-9)
Date received: 5/24/06	Laboratory ID: 1109718
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6		<5
4,4'- DDD	72-54-8	15 ug/kg	155
4,4'-DDE		5 ug/kg	<5
4,4'-DDT	72-55-9	5 ug/kg	<5
	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8		<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	54
Toxaphene		5 ug/kg	<5
Endrin ketone	8001-35-2	200 ug/kg	<200
MDL = Minimum Detection Limit	53494-70-5	5 ug/kg	<5
שביי – ביי Detection Limit		0.1	

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-9)		
Date received: 5/24/06	Laboratory ID: 1109718		
Date extracted: 5/31/06	Matrix: Soil		
Date analyzed: 5/31/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-10)
Date received: 5/24/06	Laboratory ID: 1109707
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-10)
Date received: 5/24/06	Laboratory ID: 1109707
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	•
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-10)
Date received: 5/24/06	Laboratory ID: 1109707
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

CAS No.	MDL	Results ug/kg
120-12-7	40 ug/kg	<40
86-73-7	40 ug/kg	<40
85-01-8	40 ug/kg	<40
129-00-0	40 ug/kg	<40
83-32-9	40 ug/kg	<40
56-55-3	40 ug/kg	<40
206-44-0	40 ug/kg	<40
205-99-2	40 ug/kg	<40
207-08-9	40 ug/kg	<40
218-01-9	40 ug/kg	<40
50-32-8	40 ug/kg	<40
191-24-2	40 ug/kg	<40
193-39-5	40 ug/kg	<40
53-70-3		<40
	120-12-7 86-73-7 85-01-8 129-00-0 83-32-9 56-55-3 206-44-0 205-99-2 207-08-9 218-01-9 50-32-8 191-24-2 193-39-5	120-12-7 40 ug/kg 86-73-7 40 ug/kg 85-01-8 40 ug/kg 129-00-0 40 ug/kg 83-32-9 40 ug/kg 56-55-3 40 ug/kg 206-44-0 40 ug/kg 205-99-2 40 ug/kg 207-08-9 40 ug/kg 218-01-9 40 ug/kg 50-32-8 40 ug/kg 191-24-2 40 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-10)
Date received: 5/24/06	Laboratory ID: 1109707
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	5.15
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	11.9
COPPER, Cu	1.65 mg/kg	4.88
MERCURY, Hg	0.020 mg/kg	0.202
NICKEL, Ni	1.65 mg/kg	3.14
LEAD, Pb	1.65 mg/kg	19.9

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-10)
Date received: 5/24/06	Laboratory ID: 1109707
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
<u>α - BHC</u>	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	1,627
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	6.4
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	203
4,4'-Methoxychlor	72-43-5	5 ug/kg	<u>203</u> <5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
MDL = Minimum Detection Limi		Calculate	

Calculated on a wet weight basis

20 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-10)
Date received: 5/24/06	Laboratory ID: 1109707
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-11)
Date received: 5/24/06	Laboratory ID: 1109716
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	***
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-11)
Date received: 5/24/06	Laboratory ID: 1109716
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	·
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

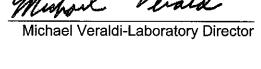
Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-11)
Date received: 5/24/06	Laboratory ID: 1109716
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

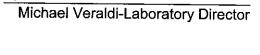

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-11)
Date received: 5/24/06	Laboratory ID: 1109716
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.16
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	7.10
COPPER, Cu	1.65 mg/kg	3.67
MERCURY, Hg	0.020 mg/kg	0.165
NICKEL, NI	1.65 mg/kg	3.00
LEAD, Pb	1.65 mg/kg	6.15

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010



Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/24/06	(GS-11) Laboratory ID: 1109716
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	<15
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	< 5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
MDL = Minimum Detection Limit			

MDL = Minimum Detection Limit.

74 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-11)		
Date received: 5/24/06	Laboratory ID: 1109716		
Date extracted: 5/31/06	Matrix: Soil		
Date analyzed: 5/31/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-12)
Date received: 5/23/06	Laboratory ID: 1109678
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	•
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-12)
Date received: 5/23/06	Laboratory ID: 1109678
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	•
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	
ADL - Minimum Detection Limit		0-11	l on a wat waigh	4 1:-

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-12)
Date received: 5/23/06	Laboratory ID: 1109678
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

CAS No.	MDL	Results ug/kg
120-12-7	40 ug/kg	<40
86-73-7		<40
85-01-8		<40
129-00-0		<40
83-32-9		<40
56-55-3		<40
206-44-0		<40
205-99-2		<40
207-08-9		<40
218-01-9		<40
50-32-8		<40
		<40
193-39-5		<40
53-70-3		<40
	120-12-7 86-73-7 85-01-8 129-00-0 83-32-9 56-55-3 206-44-0 205-99-2 207-08-9 218-01-9 50-32-8 191-24-2 193-39-5	120-12-7 40 ug/kg 86-73-7 40 ug/kg 85-01-8 40 ug/kg 129-00-0 40 ug/kg 83-32-9 40 ug/kg 56-55-3 40 ug/kg 206-44-0 40 ug/kg 205-99-2 40 ug/kg 207-08-9 40 ug/kg 218-01-9 40 ug/kg 50-32-8 40 ug/kg 191-24-2 40 ug/kg 193-39-5 40 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-12)
Date received: 5/23/06	Laboratory ID: 1109678
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.48
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	3.88
COPPER, Cu	1.65 mg/kg	3.97
MERCURY, Hg	0.020 mg/kg	1.657
NICKEL, Ni	1.65 mg/kg	<1.65
LEAD, Pb	1.65 mg/kg	18.9

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishal Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-12)
Date received: 5/23/06	Laboratory ID: 1109678
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
<u>β - BHC</u>	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	702
4,4'- DDD	72-54-8	5 ug/kg	14
4,4'-DDE	72-55-9	5 ug/kg	38
4,4'-DDT	50-29-3	5 ug/kg	24
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachior	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	136
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
IDL = Minimum Detection Limi	t	Coloulate	

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-12)
Date received: 5/23/06	Laboratory ID: 1109678
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50
MDI - Minimum Datastias Listi			1

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Mishal Verall

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-13)
Date received: 5/24/06	Laboratory ID: 1109715
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-13)
Date received: 5/24/06	Laboratory ID: 1109715
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

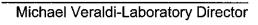
Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-13)
Date received: 5/24/06	Laboratory ID: 1109715
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis


Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-13)
Date received: 5/24/06	Laboratory ID: 1109715
Date extracted: 5/26, 5/31/06	Matrix: Soil
Date analyzed: 5/26, 5/31/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	3.80
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	6.19
COPPER, Cu	1.65 mg/kg	3.54
MERCURY, Hg	0.020 mg/kg	0.407
NICKEL, Ni	1.65 mg/kg	2.14
LEAD, Pb	1.65 mg/kg	6.49

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-13)
Date received: 5/24/06	Laboratory ID: 1109715
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
<u>α - BHC</u>	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	79
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	6.1
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
ADL = Minimum Detection Limit			lon a water all the t

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

68 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-13)		
Date received: 5/24/06	Laboratory ID: 1109715		
Date extracted: 5/31/06	Matrix: Soil		
Date analyzed: 5/31/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-14)
Date received: 5/24/06	Laboratory ID: 1109711
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	·
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	. <5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-14)
Date received: 5/24/06	Laboratory ID: 1109711
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	1
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	•
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	·
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	·
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

41 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-14)
Date received: 5/24/06	(GS-14) Laboratory ID: 1109711
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verall.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-14)
Date received: 5/24/06	Laboratory ID: 1109711
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	4.82
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	3.87
COPPER, Cu	1.65 mg/kg	2.76
MERCURY, Hg	0.020 mg/kg	0.556
NICKEL, Ni	1.65 mg/kg	<1.65
LEAD, Pb	1.65 mg/kg	13.1

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-14)
Date received: 5/24/06	Laboratory ID: 1109711
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5 <5
Chlordane	12789-03-6	15 ug/kg	<15
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
MDL = Minimum Detection Limi	it	ugrig	

Minimum Detection Limit.

Calculated on a wet weight basis

44 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-14)
Date received: 5/24/06	Laboratory ID: 1109711
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-15)
Date received: 5/24/06	Laboratory ID: 1109710
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

DICHLORODIFLUOROMETHANE	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
VINYL CHLORIDE 75-01-4 5 µg/kg <5 BROMOMETHANE 74-83-9 5 µg/kg <5	DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
BROMOMETHANE 74-83-9 5 ug/kg <5 CHLOROETHANE 75-00-3 5 ug/kg <5	CHLOROMETHANE	74-87-3	5 ug/kg	<5	
BROMOMETHANE 74-83-9 5 ug/kg <5 CHLOROETHANE 75-00-3 5 ug/kg <5	VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5		74-83-9	5 ug/kg	<5	
1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	CHLOROETHANE	75-00-3	5 ug/kg	<5	
METHYLENE CHLORIDE 75-09-2 5 ug/kg <5	TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	·
trans-1,2-DICHLOROETHENE 156-60-5 5 ug/kg <5	1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
1,1-DICHLOROETHANE 75-34-3 5 ug/kg <5	METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/kg <5	trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE 156-59-2 5 ug/kg <5	1,1-DICHLOROETHANE	75-34-3	5 ug/kg		
BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5 CHLOROFORM 67-66-3 5 ug/kg <5	2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
CHLOROFORM 67-66-3 5 ug/kg <5	cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg		
1,1,1-TRICHLOROETHANE 71-55-6 5 ug/kg <5	BROMOCHLOROMETHANE	74-97-5		<5	
CARBON TETRACHLORIDE 56-23-5 5 ug/kg <5	CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1-DICHLOROPROPENE 563-58-6 5 ug/kg <5	1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
BENZENE 71-43-2 5 ug/kg <5 1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
TRICHLOROETHENE 79-01-6 5 ug/kg <5 1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
DIBROMOMETHANE 74-95-3 5 ug/kg <5 BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5	TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5 cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5	1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5 TOLUENE 108-88-3 5 ug/kg <5	DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
TOLUENE 108-88-3 5 ug/kg <5 trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5 1,1,2-TRICHLOROETHANE 79-00-5 5 ug/kg <5	cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE 79-00-5 5 ug/kg <5	TOLUENE	108-88-3	5 ug/kg	<5	
TETRACHLOROETHYLENE 127-18-4 5 ug/kg <5	trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
TETRACHLOROETHYLENE 127-18-4 5 ug/kg <5	1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
DIBROMOCHLOROMETHANE 124-48-1 5 ug/kg <5 1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	TETRACHLOROETHYLENE	127-18-4		<5	
1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	DIBROMOCHLOROMETHANE	124-48-1		<5	
CHLOROBENZENE 108-90-7 5 ug/kg <5	1,2-DIBROMOETHANE	106-93-4		<5	
1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/kg <5	CHLOROBENZENE	108-90-7	5 ug/kg	<5	
ETHYLBENZENE 100-41-4 5 ug/kg <5 STYRENE 100-42-5 5 ug/kg <5	1,1,1,2-TETRACHLOROETHANE	630-20-6		<5	
STYRENE 100-42-5 5 ug/kg <5	ETHYLBENZENE	100-41-4		<5	
BROMOFORM 75-25-2 5 ug/kg <5	STYRENE	100-42-5			
	BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
, , , , , , , , , , , , , , , , , , , ,	(GS-15)
Date received: 5/24/06	Laboratory ID: 1109710
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

35 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-15)
Date received: 5/24/06	Laboratory ID: 1109710
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-15)
Date received: 5/24/06	Laboratory ID: 1109710
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER MDL RESULTS mg/kg SILVER, Ag 1.65 mg/kg <1.65 1.65 mg/kg ARSENIC, As 3.15 1.65 mg/kg <1.65 BERYLLIUM, Be CADMIUM, Cd 1.00 mg/kg <1.00 1.65 mg/kg CHROMIUM, Cr 8.22 COPPER, Cu 1.65 mg/kg 6.61 MERCURY, Hg 0.020 mg/kg 0.753 NICKEL, Ni 1.65 mg/kg 3.46

1.65 mg/kg

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010

LEAD, Pb

6.52
Calculated on a wet weight basis

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/24/06	(GS-15)
Date extracted: 5/31/06	Laboratory ID: 1109710 Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	DE0111 ===
Aldrin	309-00-2		RESULTS ug/kg
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)		5 ug/kg	<5
Chlordane	58-89-9	5 ug/kg	<5
4,4'- DDD	12789-03-6	15 ug/kg	59
4,4'-DDE	72-54-8	5 ug/kg	<5
	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<u> </u>
Endosulfan II	33212-65-9	5 ug/kg	
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<u><5</u>
Heptachlor epoxide	1024-57-3		<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	24
Toxaphene	8001-35-2	5 ug/kg	<5
Endrin ketone	53494-70-5	200 ug/kg	<200
IDL = Minimum Detection Limit.	00-04-70-5	5 ug/kg	<5

Calculated on a wet weight basis

38 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-15)
Date received: 5/24/06	Laboratory ID: 1109710
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-16)
Date received: 5/23/06	Laboratory ID: 1109679
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	•
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-16)
Date received: 5/23/06	Laboratory ID: 1109679
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	•
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	•
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-16)
Date received: 5/23/06	Laboratory ID: 1109679
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verash

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-16)
Date received: 5/23/06	Laboratory ID: 1109679
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.15
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	9.35
COPPER, Cu	1.65 mg/kg	2.15
MERCURY, Hg	0.020 mg/kg	0.396
NICKEL, Ni	1.65 mg/kg	1.92
LEAD, Pb	1.65 mg/kg	6.88

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishal Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06 Date extracted: 5/25/06 Date analyzed: 5/25/06	(GS-16) Laboratory ID: 1109679 Matrix: Soil ELAP #: 11693
· · · · · ·	······································

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	DE0111
Aldrin	309-00-2		RESULTS ug/kg
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane		5 ug/kg	<5
4,4'- DDD	12789-03-6	15 ug/kg	1,150
4,4'-DDE	72-54-8	5 ug/kg	<5
4,4'-DDT	72-55-9	5 ug/kg	9.5
Dieldrin	50-29-3	5 ug/kg	9.9
Endosulfan I	60-57-1	5 ug/kg	<5
Endosulfan II	959-98-8	5 ug/kg	<5
Endosulfan sulfate	33212-65-9	5 ug/kg	<5
Endrin	1031-07-8	5 ug/kg	<5
	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	141
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
IDL = Minimum Detection Limit.		Coloulatad	

Calculated on a wet weight basis

26 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-16)
Date received: 5/23/06	Laboratory ID: 1109679
Date extracted: 5/27/06	Matrix: Soil
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/24/06	(GS-17) Laboratory ID: 1109719
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	,
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-17)
Date received: 5/24/06	Laboratory ID: 1109719
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	. <5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	
IDL = Minimum Detection Limit			on a wet weight	la a a la

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-17)
Date received: 5/24/06	Laboratory ID: 1109719
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-17)
Date received: 5/24/06	Laboratory ID: 1109719
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.66
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	5.37
COPPER, Cu	1.65 mg/kg	3.62
MERCURY, Hg	0.020 mg/kg	1.265
NICKEL, Ni	1.65 mg/kg	2.34
LEAD, Pb	1.65 mg/kg	13.0

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-17)
Date received: 5/24/06	Laboratory ID: 1109719
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5 <5
<u>β - BHC</u>	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	258
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5 <5
4,4'-DDT	50-29-3	5 ug/kg	<5 <5
Dieldrin	60-57-1	5 ug/kg	
Endosulfan I	959-98-8	5 ug/kg	<5 -5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<u><5</u>
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3		<u><5</u>
4,4'-Methoxychlor	72-43-5	5 ug/kg	55
Toxaphene	8001-35-2	5 ug/kg	<u><5</u>
Endrin ketone	53494-70-5	200 ug/kg	<200
MDL = Minimum Detection Limit		5 ug/kg	<5

Calculated on a wet weight basis

92 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-17)
Date received: 5/24/06	Laboratory ID: 1109719
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-18)
Date received: 5/24/06	Laboratory ID: 1109708
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	ugrkg
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg		
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg		
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<u></u>	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg		
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<u></u>	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg		
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg		
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<u></u>	
ETHYLBENZENE	100-41-4	5 ug/kg		
STYRENE	100-42-5	5 ug/kg		
BROMOFORM	75-25-2	5 ug/kg		
DL = Minimum Detection Limit			<u></u>	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-18)
Date received: 5/24/06	Laboratory ID: 1109708
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

ISOPROPYLBENZENE 98-82-8 5 ug/kg <5	ıg/kg
1,1,2,2-TETRACHLOROETHANE 79-34-5 5 ug/kg <5	
1,1,2,2-TETRACHLOROETHANE 79-34-5 5 ug/kg <5	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <5	
n-PROPYLBENZENE 103-65-1 5 ug/kg <5	
2-CHLOROTOLUENE 95-49-8 5 ug/kg <5	
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg <5	
tert-BUTYLBENZENE 98-06-6 5 ug/kg <5 1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	
sec-BUTYLBENZENE 135-98-8 5 ug/kg <5 1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	
1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <5 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	
1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <5	
n-BUTYLBENZENE 104-51-8 5 ug/kg <5	
1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <5	
NAPHTHALENE 91-20-3 5 ug/kg <5 1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <5	
FREON 113 76-13-1 5 ug/kg <5 p-DIETHYLBENZENE 105-05-5 5 ug/kg <5	
FREON 113 76-13-1 5 ug/kg <5 p-DIETHYLBENZENE 105-05-5 5 ug/kg <5	
p-ETHYLTOLUENE 622-96-8 5 ug/kg <5 1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	
p-ETHYLTOLUENE 622-96-8 5 ug/kg <5 1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	
ACETONIE CZ CA A FO. //	
ACETONE 67-64-1 50 ug/kg <50	
CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <5	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10	
METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	
p & m-XYLENE 1330-20-7 10 ug/kg <10	
o-XYLENE 1330-20-7 5 ug/kg <5	
MTBE 1634-04-4 5 ug/kg <5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-18)
Date received: 5/24/06	Laboratory ID: 1109708
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	73
Pyrene	129-00-0	40 ug/kg	164
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	79
Fluoranthene	206-44-0	40 ug/kg	200
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	149
Benzo(k)fluoranthene	207-08-9	40 ug/kg	60
Chrysene	218-01-9	40 ug/kg	138
Benzo(a)Pyrene	50-32-8	40 ug/kg	95
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	79
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	86
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	30

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-18)
Date received: 5/24/06	Laboratory ID: 1109708
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	3.03
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	10.4
COPPER, Cu	1.65 mg/kg	4.04
MERCURY, Hg	0.020 mg/kg	1.330
NICKEL, Ni	1.65 mg/kg	4.62
LEAD, Pb	1.65 mg/kg	7.43

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

NAS-L--137 LELD (PS)

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-18)
Date received: 5/24/06	Laboratory ID: 1109708
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	3,160
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	7.1
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	78
4,4'-Methoxychlor	72-43-5	5 ug/kg	78
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
IDL = Minimum Detection Limi	1	Coloulete	

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-18)
Date received: 5/24/06	Laboratory ID: 1109708
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-19)
Date received: 5/23/06	Laboratory ID: 1109697
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-19)
Date received: 5/23/06	Laboratory ID: 1109697
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-19)		
Date received: 5/23/06	Laboratory ID: 1109697		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-19)
Date received: 5/23/06	Laboratory ID: 1109697
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	2.56
COPPER, Cu	1.65 mg/kg	2.73
MERCURY, Hg	0.020 mg/kg	0.310
NICKEL, Ni	1.65 mg/kg	<1.65
LEAD, Pb	1.65 mg/kg	7.78

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	(GS-19)
Date extracted: 5/30/06	Laboratory ID: 1109697 Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	DEGIUTO
Aldrin	309-00-2	5 ug/kg	RESULTS ug/kg
α - BHC	319-84-6	5 ug/kg	<5
<u>β - BHC</u>	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	<5
4,4'- DDD	72-54-8		30
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	< 5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II		5 ug/kg	<5
Endosulfan sulfate	33212-65-9	5 ug/kg	<5
Endrin	1031-07-8	5 ug/kg	<5
Endrin aldehyde	72-20-8	5 ug/kg	<5
	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	
Toxaphene	8001-35-2	200 ug/kg	<5
Endrin ketone	53494-70-5	5 ug/kg	<200
IDL = Minimum Detection Limi	t.	Coloulete d	<5

Calculated on a wet weight basis

Whichard Perall

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-19)
Date received: 5/23/06	Laboratory ID: 1109697
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-20)
Date received: 5/23/06	Laboratory ID: 1109698
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-20)
Date received: 5/23/06	Laboratory ID: 1109698
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

ISOPROPYLBENZENE	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
1,1,2,2-TETRACHLOROETHANE	ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <5	1,1,2,2-TETRACHLOROETHANE	79-34-5		<5	
n-PROPYLBENZENE 103-65-1 5 ug/kg <5	1,2,3-TRICHLOROPROPANE	96-18-4		<5	
4-CHLOROTOLUENE 106-43-4 5 ug/kg <5	n-PROPYLBENZENE	103-65-1		<5	
4-CHLOROTOLUENE 106-43-4 5 ug/kg <5	2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg <5	4-CHLOROTOLUENE	106-43-4		<5	
tert-BUTYLBENZENE 98-06-6 5 ug/kg <5 1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	1,3,5-TRIMETHYLBENZENE	108-67-8		<5	
Sec-BUTYLBENZENE 135-98-8 5 ug/kg <5 1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	tert-BUTYLBENZENE	98-06-6		<5	
1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <5 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	1,3-DICHLOROBENZENE	541-73-1		<5	
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <5	P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
n-BUTYLBENZENE 104-51-8 5 ug/kg <5 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
n-BUTYLBENZENE 104-51-8 5 ug/kg <5 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <5	n-BUTYLBENZENE	104-51-8		<5	
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <5	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	•
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <5 NAPHTHALENE 91-20-3 5 ug/kg <5	1,2,4-TRICHLOROBENZENE	120-82-1		<5	
NAPHTHALENE 91-20-3 5 ug/kg <5 1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5		87-68-3		<5	
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <5	NAPHTHALENE	91-20-3		<5	
FREON 113 76-13-1 5 ug/kg <5 p-DIETHYLBENZENE 105-05-5 5 ug/kg <5	1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	•
p-DIETHYLBENZENE 105-05-5 5 ug/kg <5 p-ETHYLTOLUENE 622-96-8 5 ug/kg <5	2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
p-ETHYLTOLUENE 622-96-8 5 ug/kg <5 1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	FREON 113	76-13-1	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
ACETONE 67-64-1 50 ug/kg <50 CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <5	p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <5 METHYL ETHYL KETONE 78-93-3 10 ug/kg <10	1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	ACETONE	67-64-1	50 ug/kg	<50	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5		75-45-6		<5	
p & m-XYLENE 1330-20-7 10 ug/kg <10 o-XYLENE 1330-20-7 5 ug/kg <5		78-93-3		<10	
p & m-XYLENE 1330-20-7 10 ug/kg <10 o-XYLENE 1330-20-7 5 ug/kg <5	METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
	p & m-XYLENE	1330-20-7		<10	
MTBE 1634-04-4 5 ug/kg <5	o-XYLENE	1330-20-7	5 ug/kg	<5	
	MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
D-4	(GS-20)
Date received: 5/23/06	Laboratory ID: 1109698
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40
ADL = Minimum Detection Limit			

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-20)
Date received: 5/23/06	Laboratory ID: 1109698
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	1.95
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	4.97
COPPER, Cu	1.65 mg/kg	4.72
MERCURY, Hg	0.020 mg/kg	0.027
NICKEL, Ni	1.65 mg/kg	3.01
LEAD, Pb	1.65 mg/kg	4.00

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-20)
Date received: 5/23/06	Laboratory ID: 1109698
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	<15
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5 <5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<u></u>
IDL = Minimum Detection Lim	t .	o agrig	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

19 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-20)
Date received: 5/23/06	Laboratory ID: 1109698
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-21)
Date received: 5/24/06	Laboratory ID: 1109717
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-D!CHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-21)
Date received: 5/24/06	Laboratory ID: 1109717
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

77 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-21)
Date received: 5/24/06	Laboratory ID: 1109717
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-21)
Date received: 5/24/06	Laboratory ID: 1109717
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.70
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	4.93
COPPER, Cu	1.65 mg/kg	3.55
MERCURY, Hg	0.020 mg/kg	0.035
NICKEL, NI	1.65 mg/kg	2.97
LEAD, Pb	1.65 mg/kg	26.3

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-21)
Date received: 5/24/06	Laboratory ID: 1109717
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
<u>α - BHC</u>	319-84-6	5 ug/kg	<5 <5
<u>β - BHC</u>	319-85-7	5 ug/kg	<5
<u>δ - BHC</u>	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	415
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5 <5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5 <5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5 <5
Heptachlor epoxide	1024-57-3	5 ug/kg	36
4,4'-Methoxychlor	72-43-5	5 ug/kg	
Toxaphene	8001-35-2	200 ug/kg	<5
Endrin ketone	53494-70-5	5 ug/kg	<200
MDL ≈ Minimum Detection Limit		Coloulate	<5

Calculated on a wet weight basis

80 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-21)		
Date received: 5/24/06	Laboratory ID: 1109717		
Date extracted: 5/31/06	Matrix: Soil		
Date analyzed: 5/31/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg_
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-22)
Date received: 5/24/06	Laboratory ID: 1109713
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	·
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	ï
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	, 5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-22)
Date received: 5/24/06	Laboratory ID: 1109713
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-22)
Date received: 5/24/06	Laboratory ID: 1109713
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

CAS No.	MDL	Results ug/kg
120-12-7	40 ug/kg	<40
86-73-7		<40
85-01-8		<40
129-00-0		<40
83-32-9		<40
56-55-3		<40
206-44-0		<40
205-99-2		<40
207-08-9		<40
218-01-9		<40
50-32-8		<40
191-24-2		<40
193-39-5		<40
53-70-3		<40
	120-12-7 86-73-7 85-01-8 129-00-0 83-32-9 56-55-3 206-44-0 205-99-2 207-08-9 218-01-9 50-32-8 191-24-2 193-39-5	120-12-7 40 ug/kg 86-73-7 40 ug/kg 85-01-8 40 ug/kg 129-00-0 40 ug/kg 83-32-9 40 ug/kg 56-55-3 40 ug/kg 206-44-0 40 ug/kg 205-99-2 40 ug/kg 207-08-9 40 ug/kg 218-01-9 40 ug/kg 50-32-8 40 ug/kg 191-24-2 40 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-22)
Date received: 5/24/06	Laboratory ID: 1109713
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.00
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	6.89
COPPER, Cu	1.65 mg/kg	4.73
MERCURY, Hg	0.020 mg/kg	0.151
NICKEL, Ni	1.65 mg/kg	3.56
LEAD, Pb	1.65 mg/kg	19.2

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-22)
Date received: 5/24/06	Laboratory ID: 1109713
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	173
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	14
4,4'-DDT	50-29-3	5 ug/kg	14
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	
Endosulfan sulfate	1031-07-8	5 ug/kg	<5 <5
Endrin	72-20-8	5 ug/kg	<5 <5
Endrin aldehyde	7421-93-4	5 ug/kg	
Heptachlor	76-44-8	5 ug/kg	<5 <5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5 120
4,4'-Methoxychlor	72-43-5	5 ug/kg	139
Toxaphene	8001-35-2		<5
Endrin ketone	53494-70-5	200 ug/kg	<200
MDL = Minimum Detection Limi	t	5 ug/kg	<5

= Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-22)		
Date received: 5/24/06	Laboratory ID: 1109713		
Date extracted: 5/31/06	Matrix: Soil		
Date analyzed: 5/31/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-23)
Date received: 5/23/06	Laboratory ID: 1109681
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-23)
Date received: 5/23/06	Laboratory ID: 1109681
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	•
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	,
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-23)		
Date received: 5/23/06	Laboratory ID: 1109681		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	43
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	52
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	43
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-23)
Date received: 5/23/06	Laboratory ID: 1109681
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.92
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	6.78
COPPER, Cu	1.65 mg/kg	4.10
MERCURY, Hg	0.020 mg/kg	0.039
NICKEL, Ni	1.65 mg/kg	2.48
LEAD, Pb	1.65 mg/kg	17.2

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-23)
Date received: 5/23/06	Laboratory ID: 1109681
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58 - 89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	201
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	6.6
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	9.0
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
ADL = Minimum Detection Limit		Calaulata	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

38 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-23)
Date received: 5/23/06	Laboratory ID: 1109681
Date extracted: 5/27/06	Matrix: Soil
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-24)
Date received: 5/23/06	Laboratory ID: 1109680
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	•
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue	
	(GS-24)	
Date received: 5/23/06	Laboratory ID: 1109680	
Date extracted: 5/24/06	Matrix: Soil	
Date analyzed: 5/24/06	ELAP #: 11693	

ISOPROPYLBENZENE	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
1,1,2,2-TETRACHLOROETHANE 79-34-5 5 ug/kg <5	ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <5	BROMOBENZENE	108-86-1	5 ug/kg	<5	
n-PROPYLBENZENE 103-65-1 5 ug/kg <5 2-CHLOROTOLUENE 95-49-8 5 ug/kg <5	1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
n-PROPYLBENZENE 103-65-1 5 ug/kg <5	1,2,3-TRICHLOROPROPANE	96-18-4		<5	
2-CHLOROTOLUENE 95-49-8 5 ug/kg <5	n-PROPYLBENZENE	103-65-1		<5	
4-CHLOROTOLUENE 106-43-4 5 ug/kg <5	2-CHLOROTOLUENE	95-49-8		<5	
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg <5	4-CHLOROTOLUENE	106-43-4		<5	
tert-BUTYLBENZENE 98-06-6 5 ug/kg <5 1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	1,3,5-TRIMETHYLBENZENE	108-67-8		<5	
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	tert-BUTYLBENZENE	98-06-6		<5	
sec-BUTYLBENZENE 135-98-8 5 ug/kg <5 1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	1,2,4-TRIMETHYLBENZENE	95-63-6		<5	
1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	sec-BUTYLBENZENE	135-98-8		<5	
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <5 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	1,3-DICHLOROBENZENE	541-73-1		<5	
1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	P-ISOPROPYLTOLUENE	99-87-6		<5	
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <5	1,4-DICHLOROBENZENE	106-46-7		<5	
n-BUTYLBENZENE 104-51-8 5 ug/kg <5 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	1,2-DICHLOROBENZENE	95-50-1		<5	
1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	n-BUTYLBENZENE	104-51-8			
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <5	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8		<5	
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <5 NAPHTHALENE 91-20-3 5 ug/kg <5	1,2,4-TRICHLOROBENZENE	120-82-1		<5	
NAPHTHALENE 91-20-3 5 ug/kg <5 1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	HEXACHLOROBUTADIENE	87-68-3		<5	
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	NAPHTHALENE	91-20-3		<5	
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <5	1,2,3-TRICHLOROBENZENE	87-61-6		<5	
FREON 113 76-13-1 5 ug/kg <5	2-CHLOROETHYLVINYL ETHER	110-75-8		<5	
p-DIETHYLBENZENE 105-05-5 5 ug/kg <5 p-ETHYLTOLUENE 622-96-8 5 ug/kg <5	FREON 113	76-13-1		<5	
p-ETHYLTOLUENE 622-96-8 5 ug/kg <5 1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	p-DIETHYLBENZENE	105-05-5		<5	
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	p-ETHYLTOLUENE	622-96-8		<5	
ACETONE 67-64-1 50 ug/kg <50	1,2,4,5-TETRAMETHYLBENZENE	95-93-2		<5	
CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <5 METHYL ETHYL KETONE 78-93-3 10 ug/kg <10	ACETONE	67-64-1		<50	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	CHLORODIFLUOROMETHANE	75-45-6			
METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	METHYL ETHYL KETONE	78-93-3		<10	
p & m-XYLENE 1330-20-7 10 ug/kg <10 o-XYLENE 1330-20-7 5 ug/kg <5	METHYL ISOBUTYL KETONE	108-10-1		<5	
o-XYLENE 1330-20-7 5 ug/kg <5	p & m-XYLENE	1330-20-7		<10	
	o-XYLENE				····
	MTBE	1634-04-4		<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

29 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GS-24)
Date received: 5/23/06	Laboratory ID: 1109680
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-24)
Date received: 5/23/06	Laboratory ID: 1109680
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.61
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	10.3
COPPER, Cu	1.65 mg/kg	4.04
MERCURY, Hg	0.020 mg/kg	0.234
NICKEL, NI	1.65 mg/kg	2.54
LEAD, Pb	1.65 mg/kg	15.3

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
B	(GS-24)
Date received: 5/23/06	Laboratory ID: 1109680
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

CAS No.	MDL	RESULTS ug/kg
309-00-2		<5
319-84-6		<5
319-85-7		<5
319-86-8		<5
58-89-9		<5
12789-03-6		1,398
72-54-8		<5
72-55-9		<5
50-29-3		9.5
60-57-1		<5
959-98-8		<5
33212-65-9		<5
1031-07-8		<5
72-20-8		<5
7421-93-4		<5
76-44-8		<5
1024-57-3		117
72-43-5		<5
8001-35-2		<200
53494-70-5		<5
	309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 12789-03-6 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33212-65-9 1031-07-8 72-20-8 7421-93-4 76-44-8 1024-57-3 72-43-5 8001-35-2	309-00-2 5 ug/kg 319-84-6 5 ug/kg 319-85-7 5 ug/kg 319-86-8 5 ug/kg 58-89-9 5 ug/kg 12789-03-6 15 ug/kg 72-54-8 5 ug/kg 72-55-9 5 ug/kg 50-29-3 5 ug/kg 60-57-1 5 ug/kg 959-98-8 5 ug/kg 33212-65-9 5 ug/kg 1031-07-8 5 ug/kg 72-20-8 5 ug/kg 7421-93-4 5 ug/kg 76-44-8 5 ug/kg 1024-57-3 5 ug/kg 8001-35-2 200 ug/kg 53494-70-5 5 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GS-24)		
Date received: 5/23/06	Laboratory ID: 1109680		
Date extracted: 5/27/06	Matrix: Soil		
Date analyzed: 5/27/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-1)
Date received: 5/23/06	Laboratory ID: 1109699
Date extracted: 6/1/06	Matrix: Soil
Date analyzed: 6/1/06	ELAP #: 11693

EPA METHOD 8082 AROCHLORS

PARAMETER	CAS No.	MDL	RESULTS ug/kg
AROCHLOR-1016	12674-11-2	200 ug/kg	<200
AROCHLOR-1221	1104-28-2	200 ug/kg	<200
AROCHLOR-1232	11141-16-5	200 ug/kg	<200
AROCHLOR-1242	53469-21-9	200 ug/kg	<200
AROCHLOR-1248	12672-29-6	200 ug/kg	<200
AROCHLOR-1254	11097-69-1	200 ug/kg	<200
AROCHLOR-1260	11096-82-5	200 ug/kg	<200

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-4)
Date received: 5/23/06	Laboratory ID: 1109700
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

DICHLORODIFLUOROMETHANE 75-71-8 5 ug/kg <5	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
VINYL CHLORIDE 75-01-4 5 ug/kg <5 BROMOMETHANE 74-83-9 5 ug/kg <5	DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
BROMOMETHANE 74-83-9 5 ug/kg <5 CHLOROETHANE 75-00-3 5 ug/kg <5	CHLOROMETHANE	74-87-3	5 ug/kg	<5	
CHLOROETHANE 75-00-3 5 ug/kg <5 TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5	VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5 1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	BROMOMETHANE	74-83-9	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5 1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	CHLOROETHANE	75-00-3	5 ug/kg	<5	1110
METHYLENE CHLORIDE 75-09-2 5 ug/kg <5	TRICHLOROFLUOROMETHANE	75-69-4		<5	
trans-1,2-DICHLOROETHENE 156-60-5 5 µg/kg <5	1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
1,1-DICHLOROETHANE 75-34-3 5 ug/kg <5	METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/kg <5	trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE 156-59-2 5 ug/kg <5	1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5 CHLOROFORM 67-66-3 5 ug/kg <5	2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5 CHLOROFORM 67-66-3 5 ug/kg <5	cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
CHLOROFORM 67-66-3 5 ug/kg <5	BROMOCHLOROMETHANE	74-97-5		<5	
1,1,1-TRICHLOROETHANE 71-55-6 5 ug/kg <5	CHLOROFORM	67-66-3		<5	
CARBON TETRACHLORIDE 56-23-5 5 ug/kg <5	1,1,1-TRICHLOROETHANE	71-55-6		<5	
BENZENE 71-43-2 5 ug/kg <5 1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	CARBON TETRACHLORIDE	56-23-5		<5	
1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
TRICHLOROETHENE 79-01-6 5 ug/kg <5 1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
DIBROMOMETHANE 74-95-3 5 ug/kg <5 BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5		79-01-6	5 ug/kg	<5	
BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5 cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5	1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5 TOLUENE 108-88-3 5 ug/kg <5	DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
TOLUENE 108-88-3 5 ug/kg <5 trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	TOLUENE	108-88-3	5 ug/kg	<5	
TETRACHLOROETHYLENE 127-18-4 5 ug/kg <5	trans-1,3-DICHLOROPROPENE	10061-02-6		<5	
1,3-DICHLOROPROPANE 142-28-9 5 ug/kg <5	1,1,2-TRICHLOROETHANE		5 ug/kg	<5	
DIBROMOCHLOROMETHANE 124-48-1 5 ug/kg <5 1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
CHLOROBENZENE 108-90-7 5 ug/kg <5	DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/kg <5	1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
ETHYLBENZENE 100-41-4 5 ug/kg <5 STYRENE 100-42-5 5 ug/kg <5		108-90-7	5 ug/kg		
STYRENE 100-42-5 5 ug/kg <5	1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
			5 ug/kg		
BROMOFORM 75-25-2 5 ug/kg <5		<u> </u>	5 ug/kg		
	BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(S-4)
Date received: 5/23/06	Laboratory ID: 1109700
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5
BROMOBENZENE	108-86-1	5 ug/kg	<5
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5
NAPHTHALENE	91-20-3	5 ug/kg	<5
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5
FREON 113	76-13-1	5 ug/kg	<5
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5
ACETONE	67-64-1	50 ug/kg	<50
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5
p & m-XYLENE	1330-20-7	10 ug/kg	<10
o-XYLENE	1330-20-7	5 ug/kg	<5
MTBE	1634-04-4	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-4)
Date received: 5/23/06	Laboratory ID: 1109700
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	47
Pyrene	129-00-0	40 ug/kg	72
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	94
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	57
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	53
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	Laboratory ID: 1109700
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.25
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	7.53
COPPER, Cu	1.65 mg/kg	4.80
MERCURY, Hg	0.020 mg/kg	3.983
NICKEL, Ni	1.65 mg/kg	2.92
LEAD, Pb	1.65 mg/kg	19.2

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-4)
Date received: 5/23/06	Laboratory ID: 1109700
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5 <5
α - BHC	319-84-6	5 ug/kg	<5 <5
β - BHC	319-85-7	5 ug/kg	<5
<u>δ - BHC</u>	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	918
4,4'- DDD	72-54-8	5 ug/kg	
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1		10
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde		5 ug/kg	<5
Heptachlor	7421-93-4	5 ug/kg	<5
Heptachlor epoxide	76-44-8	5 ug/kg	<5
1 4' Motherwick	1024-57-3	5 ug/kg	50
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone MDL = Minimum Detection Limi	53494-70-5	5 ug/kg	<5
יישי – ועוווווווווווווווווווווווווווווווווו	t		

Calculated on a wet weight basis

26 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-4)
Date received: 5/23/06	Laboratory ID: 1109700
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #. 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(S-5)
Date received: 5/23/06	Laboratory ID: 1109701
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(S-5)
Date received: 5/23/06	Laboratory ID: 1109701
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	•
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	•
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	•
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

29 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-5)
Date received: 5/23/06	Laboratory ID: 1109701
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishal Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-5)
Date received: 5/23/06	Laboratory ID: 1109701
Date extracted: 5/26, 5/30/06	Matrix: Soil
Date analyzed: 5/26, 5/30/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	1.94
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	4.05
COPPER, Cu	1.65 mg/kg	5.69
MERCURY, Hg	0.020 mg/kg	0.884
NICKEL, Ni	1.65 mg/kg	2.69
LEAD, Pb	1.65 mg/kg	26.9

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-5)	
Date received: 5/23/06	Laboratory ID: 1109701	
Date extracted: 5/30/06	Matrix: Soil	
Date analyzed: 5/30/06	ELAP #: 11693	

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
<u>α</u> - BHC	319-84-6	5 ug/kg	<5
<u>β - BHC</u>	319-85-7	5 ug/kg	<5
<u>δ - BHC</u>	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	144
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	15
4,4'-DDT	50-29-3	5 ug/kg	29
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	9.2
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
ADL = Minimum Detection Limit			d on a wat waint that

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-5)
Date received: 5/23/06	Laboratory ID: 1109701
Date extracted: 5/30/06	Matrix: Soil
Date analyzed: 5/30/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-6)
Date received: 5/23/06	Laboratory ID: 1109682
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

DICHLORODIFLUOROMETHANE 75-71-8 5 ug/kg <5	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
VINYL CHLORIDE 75-01-4 5 ug/kg <5 BROMOMETHANE 74-83-9 5 ug/kg <5	DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
BROMOMETHANE 74-83-9 5 ug/kg <5 CHLOROETHANE 75-00-3 5 ug/kg <5	CHLOROMETHANE	74-87-3	5 ug/kg	<5	
BROMOMETHANE 74-83-9 5 ug/kg <5 CHLOROETHANE 75-00-3 5 ug/kg <5	VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5	BROMOMETHANE	74-83-9	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5 1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	CHLOROETHANE	75-00-3	5 ug/kg	<5	
METHYLENE CHLORIDE 75-09-2 5 ug/kg <5 trans-1,2-DICHLOROETHENE 156-60-5 5 ug/kg <5	TRICHLOROFLUOROMETHANE	75-69-4		<5	
trans-1,2-DICHLOROETHENE 156-60-5 5 ug/kg <5	1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
1,1-DICHLOROETHANE 75-34-3 5 ug/kg <5	METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/kg <5	trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE 156-59-2 5 ug/kg <5	1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5 CHLOROFORM 67-66-3 5 ug/kg <5	2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
CHLOROFORM 67-66-3 5 ug/kg <5	cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE 71-55-6 5 ug/kg <5	BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CARBON TETRACHLORIDE 56-23-5 5 ug/kg <5	CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1-DICHLOROPROPENE 563-58-6 5 ug/kg <5	1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
BENZENE 71-43-2 5 ug/kg <5 1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
TRICHLOROETHENE 79-01-6 5 ug/kg <5 1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	BENZENE	71-43-2		<5	
TRICHLOROETHENE 79-01-6 5 ug/kg <5 1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
DIBROMOMETHANE 74-95-3 5 ug/kg <5 BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5	TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5 cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5	1,2-DICHLOROPROPANE	78-87-5	5 ug/kg		
cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5 TOLUENE 108-88-3 5 ug/kg <5	DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
TOLUENE 108-88-3 5 ug/kg <5 trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	cis-1,3-D!CHLOROPROPENE	10061-01-5	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	TOLUENE	108-88-3	5 ug/kg	<5	
TETRACHLOROETHYLENE 127-18-4 5 ug/kg <5		10061-02-6	5 ug/kg	<5	
1,3-DICHLOROPROPANE 142-28-9 5 ug/kg <5	1,1,2-TRICHLOROETHANE	79-00-5		<5	
DIBROMOCHLOROMETHANE 124-48-1 5 ug/kg <5 1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	-
CHLOROBENZENE 108-90-7 5 ug/kg <5	DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/kg <5		106-93-4	5 ug/kg		
ETHYLBENZENE 100-41-4 5 ug/kg <5 STYRENE 100-42-5 5 ug/kg <5	CHLOROBENZENE	108-90-7	5 ug/kg		
STYRENE 100-42-5 5 ug/kg <5	1,1,1,2-TETRACHLOROETHANE		5 ug/kg		
			5 ug/kg		
BROMOFORM 75-25-2 5 ug/kg <5			5 ug/kg		
	BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(S-6)
Date received: 5/23/06	Laboratory ID: 1109682
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5
BROMOBENZENE	108-86-1	5 ug/kg	<5
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5
NAPHTHALENE	91-20-3	5 ug/kg	<5
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5
FREON 113	76-13-1	5 ug/kg	<5
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5
ACETONE	67-64-1	50 ug/kg	<50
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5
p & m-XYLENE	1330-20-7	10 ug/kg	<10
o-XYLENE	1330-20-7	5 ug/kg	<5
MTBE	1634-04-4	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

41 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-6)
Date received: 5/23/06	Laboratory ID: 1109682
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	135
Fluorene	86-73-7	40 ug/kg	<60
Phenanthrene	85-01-8	40 ug/kg	538
Pyrene	129-00-0	40 ug/kg	1,036
Acenaphthene	83-32-9	40 ug/kg	<60
Benzo(a)Anthracene	56-55-3	40 ug/kg	616
Fluoranthene	206-44-0	40 ug/kg	1,212
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	971
Benzo(k)fluoranthene	207-08-9	40 ug/kg	341
Chrysene	218-01-9	40 ug/kg	737
Benzo(a)Pyrene	50-32-8	40 ug/kg	707
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	448
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	491
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	120

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

MDL's raised due to matrix interference.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-6)
Date received: 5/23/06	Laboratory ID: 1109682
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	2.62
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	8.63
COPPER, Cu	1.65 mg/kg	10.4
MERCURY, Hg	0.020 mg/kg	0.134
NICKEL, Ni	1.65 mg/kg	4.87
LEAD, Pb	1.65 mg/kg	21.8

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-6)
Date received: 5/23/06	Laboratory ID: 1109682
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	393
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	10
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
<u>Heptachlor</u>	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	19
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-6)
Date received: 5/23/06	Laboratory ID: 1109682
Date extracted: 5/27/06	Matrix: Soil
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-7)
Date received: 5/23/06	Laboratory ID: 1109683
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	•
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-7)
Date received: 5/23/06	Laboratory ID: 1109683
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

ISOPROPYLBENZENE 98-82-8 5 ug/kg <5	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
1,1,2,2-TETRACHLOROETHANE 79-34-5 5 ug/kg <5	ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE 79-34-5 5 ug/kg <5	BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <5	1,1,2,2-TETRACHLOROETHANE	79-34-5		<5	
n-PROPYLBENZENE 103-65-1 5 ug/kg <5 2-CHLOROTOLUENE 95-49-8 5 ug/kg <5	1,2,3-TRICHLOROPROPANE	96-18-4		<5	
2-CHLOROTOLUENE 95-49-8 5 ug/kg <5	n-PROPYLBENZENE	103-65-1		<5	
4-CHLOROTOLUENE 106-43-4 5 ug/kg <5	2-CHLOROTOLUENE	95-49-8		<5	•
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg <5	4-CHLOROTOLUENE	106-43-4		<5	
tert-BUTYLBENZENE 98-06-6 5 ug/kg <5 1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	1,3,5-TRIMETHYLBENZENE	108-67-8		<5	
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <5	tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
sec-BUTYLBENZENE 135-98-8 5 ug/kg <5 1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	1,2,4-TRIMETHYLBENZENE	95-63-6		<5	
1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <5	sec-BUTYLBENZENE	135-98-8		<5	
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <5 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	1,3-DICHLOROBENZENE	541-73-1		<5	
1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <5	P-ISOPROPYLTOLUENE	99-87-6		<5	
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <5	1,4-DICHLOROBENZENE	106-46-7		<5	•
n-BUTYLBENZENE 104-51-8 5 ug/kg <5 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	1,2-DICHLOROBENZENE	95-50-1		<5	
1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <5	n-BUTYLBENZENE	104-51-8		<5	
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <5 NAPHTHALENE 91-20-3 5 ug/kg <5	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8		<5	
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <5 NAPHTHALENE 91-20-3 5 ug/kg <5	1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	HEXACHLOROBUTADIENE	87-68-3		<5	
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <5	NAPHTHALENE	91-20-3	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <5	1,2,3-TRICHLOROBENZENE	87-61-6		<5	
FREON 113 76-13-1 5 ug/kg <5	2-CHLOROETHYLVINYL ETHER	110-75-8		<5	
p-DIETHYLBENZENE 105-05-5 5 ug/kg <5 p-ETHYLTOLUENE 622-96-8 5 ug/kg <5	FREON 113	76-13-1		<5	
p-ETHYLTOLUENE 622-96-8 5 ug/kg <5 1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	p-DIETHYLBENZENE	105-05-5		<5	
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <5	p-ETHYLTOLUENE	622-96-8		<5	
ACETONE 67-64-1 50 ug/kg <50	1,2,4,5-TETRAMETHYLBENZENE	95-93-2		<5	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	ACETONE	67-64-1		<50	
METHYL ETHYL KETONE 78-93-3 10 ug/kg <10 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5	CHLORODIFLUOROMETHANE	75-45-6		<5	
METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <5 p & m-XYLENE 1330-20-7 10 ug/kg <10	METHYL ETHYL KETONE	78-93-3		<10	
p & m-XYLENE 1330-20-7 10 ug/kg <10	METHYL ISOBUTYL KETONE	108-10-1		<5	
	p & m-XYLENE	1330-20-7		<10	
0-X12LIKL 1000-20-7 0 ug/kg <0	o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE 1634-04-4 5 ug/kg <5	MTBE	1634-04-4		<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	Laboratory ID: 1109683
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	45
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	59
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysenè	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-7)
Date received: 5/23/06	Laboratory ID: 1109683
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	3.87
COPPER, Cu	1.65 mg/kg	4.80
MERCURY, Hg	0.020 mg/kg	0.309
NICKEL, Ni	1.65 mg/kg	1.69
LEAD, Pb	1.65 mg/kg	4.87

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue		
	(S-7)		
Date received: 5/23/06	Laboratory ID: 1109683		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
<u>α - BHC</u>	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	368
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	11
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachior	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	11
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
MDL = Minimum Detection Lim	+	0 0	!

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

50 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-7)
Date received: 5/23/06	Laboratory ID: 1109683
Date extracted: 5/27/06	Matrix: Soil
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(S-8)
Date received: 5/23/06	Laboratory ID: 1109684
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

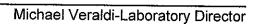
Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(S-8)
Date received: 5/23/06	Laboratory ID: 1109684
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

.TS	ug/kg
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	
<5	-
<50	
<5	
<10	
<5	
<10	
<5	
<5	
	<5 <5 <5 <50 <50 <10 <10 <5 <10 <5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis


Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-8)
Date received: 5/23/06	Laboratory ID: 1109684
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-8)
Date received: 5/23/06	Laboratory ID: 1109684
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	3.24
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	9.73
COPPER, Cu	1.65 mg/kg	5.88
MERCURY, Hg	0.020 mg/kg	0.440
NICKEL, Ni	1.65 mg/kg	2.78
LEAD, Pb	1.65 mg/kg	13.1

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	(S-8)
	Laboratory ID: 1109684
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
<u>δ - BHC</u>	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	471
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	6.6
4,4'-DDT	50-29-3	5 ug/kg	9.0
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5 <5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	9.8
4,4'-Methoxychlor	72-43-5	5 ug/kg	<u>9.0</u> <5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
MDL = Minimum Detection Limit			

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

56 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-8)
Date received: 5/23/06	Laboratory ID: 1109684
Date extracted: 5/27/06	Matrix: Soil
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verall

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-10)	
Date received: 5/25/06	Laboratory ID: 1109830	
Date extracted: 5/25/06	Matrix: Soil	
Date analyzed: 5/25/06	ELAP #: 11693	

PARAMETER	CAS No.	MDL	RESULTS ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<10
CHLOROMETHANE	74-87-3	5 ug/kg	<10
VINYL CHLORIDE	75-01-4	5 ug/kg	<10
BROMOMETHANE	74-83-9	5 ug/kg	<10
CHLOROETHANE	75-00-3	5 ug/kg	<10
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<10
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<10
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<10
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<10
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<10
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<10
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<10
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<10
CHLOROFORM	67-66-3	5 ug/kg	<10
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<10
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<10
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<10
BENZENE	71-43-2	5 ug/kg	<10
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<10
TRICHLOROETHENE	79-01-6	5 ug/kg	<10
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<10
DIBROMOMETHANE	74-95-3	5 ug/kg	<10
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<10
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<10
TOLUENE	108-88-3	5 ug/kg	<10
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<10
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<10
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<10
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<10
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<10
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<10
CHLOROBENZENE	108-90-7	5 ug/kg	<10
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<10
ETHYLBENZENE	100-41-4	5 ug/kg	<10
STYRENE	100-42-5	5 ug/kg	<10
BROMOFORM	75-25-2	5 ug/kg	<10

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-10)		
Date received: 5/25/06	Laboratory ID: 1109830		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<10
BROMOBENZENE	108-86-1	5 ug/kg	<10
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<10
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<10
n-PROPYLBENZENE	103-65-1	5 ug/kg	<10
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<10
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<10
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<10
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<10
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<10
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<10
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<10
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<10
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<10
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<10
n-BUTYLBENZENE	104-51-8	5 ug/kg	<10
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<10
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<10
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<10
NAPHTHALENE	91-20-3	5 ug/kg	<10
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<10
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<10
FREON 113	76-13-1	5 ug/kg	<10
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<10
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<10
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<10
ACETONE	67-64-1	50 ug/kg	<100
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<10
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<20
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<10
p & m-XYLENE	1330-20-7	10 ug/kg	<20
o-XYLENE	1330-20-7	5 ug/kg	<10
MTBE	1634-04-4	5 ug/kg	<10

MDL = Minimum Detection Limit.

MDL's raised due to matrix interference.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-10)		
Date received: 5/25/06	Laboratory ID: 1109830		
Date extracted: 5/26/06	Matrix: Soil		
Date analyzed: 5/26/06	ELAP #: 11693		

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<60
Fluorene	86-73-7	40 ug/kg	<60
Phenanthrene	85-01-8	40 ug/kg	204
Pyrene	129-00-0	40 ug/kg	414
Acenaphthene	83-32-9	40 ug/kg	<60
Benzo(a)Anthracene	56-55-3	40 ug/kg	209
Fluoranthene	206-44-0	40 ug/kg	527
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	464
Benzo(k)fluoranthene	207-08-9	40 ug/kg	136
Chrysene	218-01-9	40 ug/kg	373
Benzo(a)Pyrene	50-32-8	40 ug/kg	221
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	264
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	257
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<60

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

MDL's raised due to matrix interference.

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(S-10)
Date received: 5/25/06	Laboratory ID: 1109830
Date extracted: 5/26, 6/1/06	Matrix: Soil
Date analyzed: 5/26, 6/1/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	5.42
COPPER, Cu	1.65 mg/kg	15.4
MERCURY, Hg	0.020 mg/kg	0.430
NICKEL, Ni	1.65 mg/kg	3.70
LEAD, Pb	1.65 mg/kg	36.0

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-10)		
Date received: 5/25/06	Laboratory ID: 1109830		
Date extracted: 5/31/06	Matrix: Soil		
Date analyzed: 5/31/06	ELAP #: 11693		

PESTICIDES EPA METHOD 8081

309-00-2 319-84-6 319-85-7	5 ug/kg 5 ug/kg	<5 <5
	5 ug/kg	-5
319-85-7		~ 5
	5 ug/kg	<5
319-86-8	5 ug/kg	<5
58-89-9	5 ug/kg	<5
12789-03-6	15 ug/kg	3,029
72-54-8	5 ug/kg	<5
72-55-9	5 ug/kg	<5
50-29-3	5 ug/kg	7.7
60-57-1	5 ug/kg	269
959-98-8	5 ug/kg	<5
33212-65-9	5 ug/kg	<5
1031-07-8	5 ug/kg	<5
72-20-8	5 ug/kg	<5
7421-93-4	5 ug/kg	<5
76-44-8	5 ug/kg	<5
1024-57-3	5 ug/kg	37
72-43-5	5 ug/kg	<5
8001-35-2	200 ug/kg	<200
53494-70-5	5 ug/kg	<5
	319-86-8 58-89-9 12789-03-6 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33212-65-9 1031-07-8 72-20-8 7421-93-4 76-44-8 1024-57-3 72-43-5 8001-35-2	319-86-8 5 ug/kg 58-89-9 5 ug/kg 12789-03-6 15 ug/kg 72-54-8 5 ug/kg 72-55-9 5 ug/kg 50-29-3 5 ug/kg 60-57-1 5 ug/kg 959-98-8 5 ug/kg 33212-65-9 5 ug/kg 1031-07-8 5 ug/kg 72-20-8 5 ug/kg 76-44-8 5 ug/kg 1024-57-3 5 ug/kg 72-43-5 5 ug/kg 8001-35-2 200 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-10)
Date received: 5/25/06	Laboratory ID: 1109830
Date extracted: 6/1/06	Matrix: Soil
Date analyzed: 6/1/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishael Veraid

33 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-11)
Date received: 5/23/06	Laboratory ID: 1109702
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

EPA METHOD 8021 (STARS)

Parameter	CAS No.	MDL	Results ug/kg
MTBE	1634-04-4	5 ug/kg	<5
Benzene	71-43-2	5 ug/kg	<5
n-Butylbenzene	104-51-8	5 ug/kg	<5
sec-Butylbenzene	135-98-7	5 ug/kg	<5
tert-Butylbenzene	98-06-8	5 ug/kg	<5
Isopropylbezene	98-82-8	5 ug/kg	<5
p-Isopropyltoluene	99-87-6	5 ug/kg	<5
n-Propylbenzene	103-65-1	5 ug/kg	<5
Ethylbenzene	100-41-4	5 ug/kg	<5
Naphthalene	91-20-3	5 ug/kg	<5
Toluene	108-88-3	5 ug/kg	<5
1,2,4-Trimethylbenzene	95-63-6	5 ug/kg	<5
1,3,5-Trimethylbenzene	108-67-8	5 ug/kg	<5
p & m-Xylenes	1330-20-7	5 ug/kg	<10
o-Xylene	1330-20-7	5 ug/kg	<5

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Mishael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (S-11)
Date received: 5/23/06	Laboratory ID: 1109702
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

EPA METHOD 8270 (STARS)

Parameter	CAS No.	MDL	Results ug/kg
Naphthalene	91-20-3	40 ug/kg	<40
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	151
Pyrene	129-00-0	40 ug/kg	179
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	98
Fluoranthene	206-44-0	40 ug/kg	230
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	138
Benzo(k)fluoranthene	207-08-9	40 ug/kg	45
Chrysene	218-01-9	40 ug/kg	124
Benzo(a)Pyrene	50-32-8	40 ug/kg	87
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	58
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	58
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Mishael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-1)
Date received: 5/25/06	Laboratory ID: 1109824
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	<u> </u>
CHLOROMETHANE	74-87-3	5 ug/kg	<5	······································
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	· · · · · · · · · · · · · · · · · · ·
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	-
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	···
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	88	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg		
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg		
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg		
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<u>\</u> 5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg		
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg		
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<u></u>	
BROMOFORM	75-25-2	5 ug/kg		
DI = Minimum Detection Limit		~ ~g///g		

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-1)		
Date received: 5/25/06	Laboratory ID: 1109824		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	<u>g</u> g
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	···
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	58	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	
IDL = Minimum Detection Limit				

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

4 of 43 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue	
Date received: 5/25/06	Laboratory ID: 1109824	
Date extracted: 5/26/06	Matrix: Soil	
Date analyzed: 5/26/06	ELAP #: 11693	

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	46
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	41
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-1)
Date received: 5/25/06	Laboratory ID: 1109824
Date extracted: 5/26, 6/1/06	Matrix: Soil
Date analyzed: 5/26, 6/1/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	2.35
COPPER, Cu	1.65 mg/kg	3.85
MERCURY, Hg	0.020 mg/kg	0.045
NICKEL, Ni	1.65 mg/kg	1.83
LEAD, Pb	1.65 mg/kg	6.68

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-1)
Date received: 5/25/06	Laboratory ID: 1109824
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	24
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-1)
Date received: 5/25/06	Laboratory ID: 1109824
Date extracted: 6/1/06	Matrix: Soil
Date analyzed: 6/1/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-2)
Date received: 5/25/06	Laboratory ID: 1109825
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

DICHLORODIFLUOROMETHANE 75-71-8 5 ug/kg <5	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
VINYL CHLORIDE 75-01-4 5 ug/kg <5 BROMOMETHANE 74-83-9 5 ug/kg <5	DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
BROMOMETHANE		74-87-3	5 ug/kg	<5	
BROMOMETHANE	VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5 1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	BROMOMETHANE	74-83-9		<5	
1,1-DICHLOROETHENE	CHLOROETHANE	75-00-3	5 ug/kg	<5	
METHYLENE CHLORIDE 75-09-2 5 ug/kg <5	TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE 156-60-5 5 ug/kg <5	1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE 156-60-5 5 ug/kg <5	METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/kg <5	trans-1,2-DICHLOROETHENE	156-60-5		<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/kg <5	1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE 156-59-2 5 ug/kg <5 BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5	2,2-DICHLOROPROPANE	594-20-7		<5	
BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5 CHLOROFORM 67-66-3 5 ug/kg <5	cis-1,2-DICHLOROETHENE	156-59-2		<5	,
CHLOROFORM 67-66-3 5 ug/kg <5	BROMOCHLOROMETHANE	74-97-5		<5	
1,1,1-TRICHLOROETHANE 71-55-6 5 ug/kg <5	CHLOROFORM	67-66-3		<5	
CARBON TETRACHLORIDE 56-23-5 5 ug/kg <5 1,1-DICHLOROPROPENE 563-58-6 5 ug/kg <5	1,1,1-TRICHLOROETHANE	71-55-6		<5	
1,1-DICHLOROPROPENE 563-58-6 5 ug/kg <5	CARBON TETRACHLORIDE	56-23-5		<5	
BENZENE 71-43-2 5 ug/kg <5 1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	1,1-DICHLOROPROPENE	563-58-6		<5	
1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	BENZENE	71-43-2		<5	
TRICHLOROETHENE 79-01-6 5 ug/kg <5 1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	1,2-DICHLOROETHANE	107-06-2		<5	
DIBROMOMETHANE 74-95-3 5 ug/kg <5 BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5	TRICHLOROETHENE	79-01-6		<5	
BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5 cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5		78-87-5	5 ug/kg	<5	
BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5 cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5		74-95-3	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5 TOLUENE 108-88-3 5 ug/kg <5	BROMODICHLOROMETHANE	75-27-4		<5	
TOLUENE 108-88-3 5 ug/kg <5 trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	cis-1,3-DICHLOROPROPENE	10061-01-5		<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5 1,1,2-TRICHLOROETHANE 79-00-5 5 ug/kg <5	TOLUENE	108-88-3			
1,1,2-TRICHLOROETHANE 79-00-5 5 ug/kg <5	trans-1,3-DICHLOROPROPENE	10061-02-6			
TETRACHLOROETHYLENE 127-18-4 5 ug/kg <5	1,1,2-TRICHLOROETHANE	79-00-5			
1,3-DICHLOROPROPANE 142-28-9 5 ug/kg <5	TETRACHLOROETHYLENE	127-18-4			
DIBROMOCHLOROMETHANE 124-48-1 5 ug/kg <5 1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	1,3-DICHLOROPROPANE	142-28-9			
1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	DIBROMOCHLOROMETHANE				
CHLOROBENZENE 108-90-7 5 ug/kg <5 1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/kg <5	1,2-DIBROMOETHANE				
1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/kg <5					
ETHYLBENZENE 100-41-4 5 ug/kg <5 STYRENE 100-42-5 5 ug/kg <5	1,1,1,2-TETRACHLOROETHANE	630-20-6			
STYRENE 100-42-5 5 ug/kg <5		100-41-4			
	BROMOFORM				

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-2)
Date received: 5/25/06	Laboratory ID: 1109825
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	99
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	·
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	·
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	 -
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5 <5	
DL = Minimum Detection Limit		Calculates		

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-2)
Date received: 5/25/06	Laboratory ID: 1109825
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-2)
Date received: 5/25/06	Laboratory ID: 1109825
Date extracted: 5/26, 6/1/06	Matrix: Soil
Date analyzed: 5/26, 6/1/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	<1.65
COPPER, Cu	1.65 mg/kg	3.00
MERCURY, Hg	0.020 mg/kg	0.022
NICKEL, Ni	1.65 mg/kg	<1.65
LEAD, Pb	1.65 mg/kg	2.13

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-2)
Date received: 5/25/06	Laboratory ID: 1109825
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	49
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

13 of 43 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-2)
Date received: 5/25/06	Laboratory ID: 1109825
Date extracted: 6/1/06	Matrix: Soil
Date analyzed: 6/1/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-3)
Date received: 5/25/06	Laboratory ID: 1109826
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	3. 3
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	·
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	14	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	·
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	,, <5	
CHLOROBENZENE	108-90-7	5 ug/kg	<u> </u>	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 	
ETHYLBENZENE	100-41-4	5 ug/kg	25	
STYRENE	100-42-5	5 ug/kg		
BROMOFORM	75-25-2	5 ug/kg		
ADL = Minimum Detection Limit		Oplanta		

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-3)	
Date received: 5/25/06	Laboratory ID: 1109826	
Date extracted: 5/25/06	Matrix: Soil	
Date analyzed: 5/25/06	ELAP #: 11693	

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	<u> </u>
BROMOBENZENE	108-86-1	5 ug/kg	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	8	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	31	 ···
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	<u> </u>
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	-
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	10	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	12	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	43	
o-XYLENE	1330-20-7	5 ug/kg	21	
MTBE	1634-04-4	5 ug/kg	<5	·
IDL = Minimum Detection Limit		Coloulatea		

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-3)	
Date received: 5/25/06	Laboratory ID: 1109826	
Date extracted: 5/26/06	Matrix: Soil	
Date analyzed: 5/23/06	ELAP #: 11693	

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	232
Pyrene	129-00-0	40 ug/kg	205
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	76
Fluoranthene	206-44-0	40 ug/kg	221
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	141
Benzo(k)fluoranthene	207-08-9	40 ug/kg	50
Chrysene	218-01-9	40 ug/kg	115
Benzo(a)Pyrene	50-32-8	40 ug/kg	82
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	59
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	53
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-3)
Date received: 5/25/06	Laboratory ID: 1109826
Date extracted: 5/26, 6/1/06	Matrix: Soil
Date analyzed: 5/26, 6/1/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	5.39
COPPER, Cu	1.65 mg/kg	11.7
MERCURY, Hg	0.020 mg/kg	0.218
NICKEL, NI	1.65 mg/kg	1.96
LEAD, Pb	1.65 mg/kg	7.84

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-3)	
Date received: 5/25/06	Laboratory ID: 1109826	
Date extracted: 5/31/06	Matrix: Soil	
Date analyzed: 5/31/06	ELAP #: 11693	

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	108
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

19 of 43 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-3)	
Date received: 5/25/06	Laboratory ID: 1109826	
Date extracted: 6/1/06	Matrix: Soil	
Date analyzed: 6/1/06	ELAP #: 11693	

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Nevald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-4)
Date received: 5/25/06	Laboratory ID: 1109827
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	33
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	· · · · · · · · · · · · · · · · · · ·
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	···
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	·
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	· · · · · · · · · · · · · · · · · · ·
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	·i
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	51	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5 <5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5 <5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg		
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<u> </u>	
ETHYLBENZENE	100-41-4	5 ug/kg	24	
STYRENE	100-42-5	5 ug/kg	24	
BROMOFORM	75-25-2	5 ug/kg	<u>\</u> 5	
DL = Minimum Detection Limit		O dg/kg		

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/25/06 Date extracted: 5/25/06 Date analyzed: 5/25/06	(SD-4) Laboratory ID: 1109827 Matrix: Soil
Date arranyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	DESULTO	
ISOPROPYLBENZENE	98-82-8	5 ug/kg	RESULTS	ug/kg
BROMOBENZENE	108-86-1	5 ug/kg	<5	<u></u>
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1		<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	14	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE		5 ug/kg	<5	
1,2-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
n-BUTYLBENZENE	95-50-1	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	104-51-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	96-12-8	5 ug/kg	<5	
HEXACHLOROBUTADIENE	120-82-1	5 ug/kg	<5	
NAPHTHALENE	87-68-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	91-20-3	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	87-61-6	5 ug/kg	<5	
FREON 113	110-75-8	5 ug/kg	<5	
p-DIETHYLBENZENE	76-13-1	5 ug/kg	<5	
p-ETHYLTOLUENE	105-05-5	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	622-96-8	5 ug/kg	<5	
ACETONE ACETONE	95-93-2	5 ug/kg	7	
CHLORODIFLUOROMETHANE	67-64-1	50 ug/kg	<50	
METHYL ETHYL KETOWE	75-45-6	5 ug/kg	<u></u>	
METHYL SORUTA KETONE	78-93-3	10 ug/kg	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg		
p & m-XYLENE	1330-20-7	10 ug/kg	62	
o-XYLENE	1330-20-7	5 ug/kg		
MTBE	1634-04-4	5 ug/kg	24	
L = Minimum Detection Limit.		Coloulated	<5 on a wet weight be	

Calculated on a wet weight basis

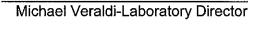
22 of 43 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(SD-4)
Date received: 5/25/06	Laboratory ID: 1109827
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	135
Pyrene	129-00-0	40 ug/kg	158
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	59
Fluoranthene	206-44-0	40 ug/kg	177
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	99
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	103
Benzo(a)Pyrene	50-32-8	40 ug/kg	60
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	58
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	59
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.


Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-4)
Date received: 5/25/06	Laboratory ID: 1109827
Date extracted: 5/26, 6/1/06	Matrix: Soil
Date analyzed: 5/26, 6/1/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	5.01
COPPER, Cu	1.65 mg/kg	8.75
MERCURY, Hg	0.020 mg/kg	4.805
NICKEL, Ni	1.65 mg/kg	1.84
LEAD, Pb	1.65 mg/kg	5.69

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SD-4)	
Date received: 5/25/06	Laboratory ID: 1109827	
Date extracted: 5/31/06	Matrix: Soil	
Date analyzed: 5/31/06	ELAP #: 11693	

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	963
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	13
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	22
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verall

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/25/06	(SD-4)
	Laboratory ID: 1109827
Date extracted: 6/1/06	Matrix: Soil
Date analyzed: 6/1/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	DECLII TO
DICAMBA	1918-00-9	50 ug/kg	RESULTS ug/kg
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50
MDL = Minimum Dotoction Limit		oo ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-1)		
Date received: 5/25/06	Laboratory ID: 1109828		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	~33
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	· -, · · ·
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	·
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	8	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5 <5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5 <5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg		
CHLOROBENZENE	108-90-7	5 ug/kg 5 ug/kg		
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg 5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg 5 ug/kg	<5 <5	
STYRENE	100-42-5	5 ug/kg 5 ug/kg	<u><5</u> <5	
BROMOFORM	75-25-2	5 ug/kg 5 ug/kg		
IDL = Minimum Detection Limit.	,0202	Coloulet-	<5	

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-1)	
Date received: 5/25/06	Laboratory ID: 1109828	
Date extracted: 5/25/06	Matrix: Soil	
Date analyzed: 5/25/06	ELAP #: 11693	

PARAMETER PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5
BROMOBENZENE	108-86-1	5 ug/kg	<5
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5
NAPHTHALENE	91-20-3	5 ug/kg	<5
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5
FREON 113	76-13-1	5 ug/kg	<5
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5
ACETONE	67-64-1	50 ug/kg	107
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5
METHYL ETHYL KETONE	78-93-3	10 ug/kg	33
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	
p & m-XYLENE	1330-20-7	10 ug/kg	<10
o-XYLENE	1330-20-7	5 ug/kg	<5
MTBE	1634-04-4	5 ug/kg	<5
DI = Minimum Detection Limit		Coloulataa	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-1)	
Date received: 5/25/06	Laboratory ID: 1109828	
Date extracted: 5/26/06	Matrix: Soil	
Date analyzed: 5/26/06	ELAP #: 11693	

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-1)
Date received: 5/25/06	Laboratory ID: 1109828
Date extracted: 5/26, 6/1/06	Matrix: Soil
Date analyzed: 5/26, 6/1/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	1.54
CHROMIUM, Cr	1.65 mg/kg	6.93
COPPER, Cu	1.65 mg/kg	310
MERCURY, Hg	0.020 mg/kg	0.100
NICKEL, NI	1.65 mg/kg	5.02
LEAD, Pb	1.65 mg/kg	392

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-1)
Date received: 5/25/06	Laboratory ID: 1109828
Date extracted: 5/31/06	Matrix: Soil
Date analyzed: 5/31/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	24
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

31 of 43 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-1)	
Date received: 5/25/06	Laboratory ID: 1109828	
Date extracted: 6/1/06	Matrix: Soil	
Date analyzed: 6/1/06	ELAP #: 11693	

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Mishael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-3)	
Date received: 5/25/06	Laboratory ID: 1109829	
Date extracted: 5/25/06	Matrix: Soil	
Date analyzed: 5/25/06	ELAP #: 11693	

PARAMETER	CAS No.	MDL	RESULTS ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<25
CHLOROMETHANE	74-87-3	5 ug/kg	<25
VINYL CHLORIDE	75-01-4	5 ug/kg	<25
BROMOMETHANE	74-83-9	5 ug/kg	<25
CHLOROETHANE	75-00-3	5 ug/kg	<25
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<25
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<25
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<25
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<25
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<25
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<25
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<25
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<25
CHLOROFORM	67-66-3	5 ug/kg	<25
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<25
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<25
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<25
BENZENE	71-43-2	5 ug/kg	<25
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<25
TRICHLOROETHENE	79-01-6	5 ug/kg	<25
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<25
DIBROMOMETHANE	74-95-3	5 ug/kg	<25
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<25
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<25
TOLUENE	108-88-3	5 ug/kg	94
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<25
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<25
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<25
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<25
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<25
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<25
CHLOROBENZENE	108-90-7	5 ug/kg	9,720
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<25
ETHYLBENZENE	100-41-4	5 ug/kg	<25
STYRENE	100-42-5	5 ug/kg	<25
BROMOFORM	75-25-2	5 ug/kg	<25

MDL = Minimum Detection Limit.

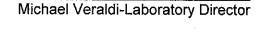
Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-3)
Date received: 5/25/06	Laboratory ID: 1109829
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<25
BROMOBENZENE	108-86-1	5 ug/kg	<25
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<25
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<25
n-PROPYLBENZENE	103-65-1	5 ug/kg	<25
2-CHLOROTOLUÈNE	95-49-8	5 ug/kg	<25
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<25
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<25
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<25
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<25
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<25
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<25
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<25
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<25
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<25
n-BUTYLBENZENE	104-51-8	5 ug/kg	<25
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<25
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<25
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<25
NAPHTHALENE	91-20-3	5 ug/kg	<25
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<25
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<25
FREON 113	76-13-1	5 ug/kg	<25
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<25
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<25
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<25
ACETONE	67-64-1	50 ug/kg	<250
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<25
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<50
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<25
p & m-XYLENE	1330-20-7	10 ug/kg	<50
o-XYLENE	1330-20-7	5 ug/kg	<25
MTBE	1634-04-4	5 ug/kg	<25
IDL = Minimum Detection Limit			d on a wat waight hadia

MDL = Minimum Detection Limit.

MDL's raised due to high levels of target compounds.

Calculated on a wet weight basis



Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(SS-3)
Date received: 5/25/06	Laboratory ID: 1109829
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	<40
Pyrene	129-00-0	40 ug/kg	<40
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	<40
Fluoranthene	206-44-0	40 ug/kg	<40
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	<40
Benzo(k)fluoranthene	207-08-9	40 ug/kg	<40
Chrysene	218-01-9	40 ug/kg	<40
Benzo(a)Pyrene	50-32-8	40 ug/kg	<40
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	<40
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	<40
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	<40

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-3)
Date received: 5/25/06	Laboratory ID: 1109829
Date extracted: 5/26, 6/1/06	Matrix: Soil
Date analyzed: 5/26, 6/1/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	6.50
COPPER, Cu	1.65 mg/kg	142
MERCURY, Hg	0.020 mg/kg	<0.020
NICKEL, NI	1.65 mg/kg	5.75
LEAD, Pb	1.65 mg/kg	24.4

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-3)	
Date received: 5/25/06	Laboratory ID: 1109829	
Date extracted: 5/31/06	Matrix: Soil	
Date analyzed: 5/31/06	ELAP #: 11693	

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	<15
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
IDI — Minimum Dataatian Lingii		Oalaulata	al

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-3)		
Date received: 5/25/06	Laboratory ID: 1109829		
Date extracted: 6/1/06	Matrix: Soil		
Date analyzed: 6/1/06	ELAP #: 11693		

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(SS-4)
Date received: 5/23/06	Laboratory ID: 1109689
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<50
CHLOROMETHANE	74-87-3	5 ug/kg	<50
VINYL CHLORIDE	75-01-4	5 ug/kg	<50
BROMOMETHANE	74-83-9	5 ug/kg	<50
CHLOROETHANE	75-00-3	5 ug/kg	<50
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<50
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<50
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<50
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<50
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<50
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<50
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<50
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<50
CHLOROFORM	67-66-3	5 ug/kg	<50
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<50
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<50
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<50
BENZENE	71-43-2	5 ug/kg	<50
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<50
TRICHLOROETHENE	79-01-6	5 ug/kg	<50
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<50
DIBROMOMETHANE	74-95-3	5 ug/kg	<50
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<50
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<50
TOLUENE	108-88-3	5 ug/kg	<50
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<50
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<50
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<50
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<50
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<50
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<50
CHLOROBENZENE	108-90-7	5 ug/kg	<50
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<50
ETHYLBENZENE	100-41-4	5 ug/kg	<50
STYRENE	100-42-5	5 ug/kg	<50
BROMOFORM	75-25-2	5 ug/kg	<50

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-4)	
Date received: 5/23/06	Laboratory ID: 1109689	
Date extracted: 5/24/06	Matrix: Soil	
Date analyzed: 5/24/06	ELAP #: 11693	

ISOPROPYLBENZENE	PARAMETER	CAS No.	MDL	RESULTS ug/kg
BROMOBENZENE 108-86-1 5 ug/kg <50	ISOPROPYLBENZENE	98-82-8	5 ug/kg	
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <50	BROMOBENZENE	108-86-1		<50
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <50	1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<50
n-PROPYLBENZENE 103-65-1 5 ug/kg <50 2-CHLOROTOLUENE 95-49-8 5 ug/kg <50	1,2,3-TRICHLOROPROPANE	96-18-4		<50
4-CHLOROTOLUENE 106-43-4 5 ug/kg <50	n-PROPYLBENZENE	103-65-1		<50
4-CHLOROTOLUENE 106-43-4 5 ug/kg <50	2-CHLOROTOLUENE	95-49-8		<50
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg 62 tert-BUTYLBENZENE 98-06-6 5 ug/kg <50	4-CHLOROTOLUENE	106-43-4		<50
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg <50	1,3,5-TRIMETHYLBENZENE	108-67-8		62
sec-BUTYLBENZENE 135-98-8 5 ug/kg <50 1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <50	tert-BUTYLBENZENE	98-06-6	5 ug/kg	<50
sec-BUTYLBENZENE 135-98-8 5 ug/kg <50 1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <50	1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<50
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <50 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <50	sec-BUTYLBENZENE	135-98-8		<50
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg <50 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <50	1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<50
1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <50	P-ISOPROPYLTOLUENE	99-87-6		<50
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <50	1,4-DICHLOROBENZENE	106-46-7		<50
1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <50	1,2-DICHLOROBENZENE	95-50-1		<50
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <50	n-BUTYLBENZENE	104-51-8	5 ug/kg	<50
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <50 NAPHTHALENE 91-20-3 5 ug/kg <50	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<50
NAPHTHALENE 91-20-3 5 ug/kg <50 1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <50	1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<50
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <50	HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<50
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <50	NAPHTHALENE	91-20-3	5 ug/kg	<50
FREON 113 76-13-1 5 ug/kg <50 p-DIETHYLBENZENE 105-05-5 5 ug/kg <50	1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<50
p-DIETHYLBENZENE 105-05-5 5 ug/kg <50 p-ETHYLTOLUENE 622-96-8 5 ug/kg <50	2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<50
p-DIETHYLBENZENE 105-05-5 5 ug/kg <50 p-ETHYLTOLUENE 622-96-8 5 ug/kg <50	FREON 113	76-13-1	5 ug/kg	<50
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg <50	p-DIETHYLBENZENE	105-05-5		<50
ACETONE 67-64-1 50 ug/kg <500 CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <50	p-ETHYLTOLUENE	622-96-8	5 ug/kg	<50
CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <50 METHYL ETHYL KETONE 78-93-3 10 ug/kg <100	1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<50
METHYL ETHYL KETONE 78-93-3 10 ug/kg <100 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <50	ACETONE	67-64-1	50 ug/kg	<500
METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <50 p & m-XYLENE 1330-20-7 10 ug/kg <100	CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<50
METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <50 p & m-XYLENE 1330-20-7 10 ug/kg <100	METHYL ETHYL KETONE	78-93-3		<100
p & m-XYLENE 1330-20-7 10 ug/kg <100 o-XYLENE 1330-20-7 5 ug/kg <50	METHYL ISOBUTYL KETONE	108-10-1		<50
o-XYLENE 1330-20-7 5 ug/kg <50	p & m-XYLENE	1330-20-7		<100
MTBE 1634-04-4 5 ug/kg <50	o-XYLENE	1330-20-7		<50
	MTBE	1634-04-4	5 ug/kg	<50

MDL = Minimum Detection Limit.

MDL's raised due to non-target compound interference.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue	
D-4	(SS-4)	
Date received: 5/23/06	Laboratory ID: 1109689	
Date extracted: 5/25/06	Matrix: Soil	
Date analyzed: 5/25/06	ELAP #: 11693	

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	248
Pyrene	129-00-0	40 ug/kg	437
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	201
Fluoranthene	206-44-0	40 ug/kg	554
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	391
Benzo(k)fluoranthene	207-08-9	40 ug/kg	169
Chrysene	218-01-9	40 ug/kg	353
Benzo(a)Pyrene	50-32-8	40 ug/kg	216
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	233
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	214
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	44

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-4)
Date received: 5/23/06	Laboratory ID: 1109689
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	1.37
CHROMIUM, Cr	1.65 mg/kg	3.01
COPPER, Cu	1.65 mg/kg	102
MERCURY, Hg	0.020 mg/kg	1.349
NICKEL, Ni	1.65 mg/kg	2.38
LEAD, Pb	1.65 mg/kg	25.5

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/00/00	(SS-4)
Date received: 5/23/06	Laboratory ID: 1109689
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	DECLII TO
Aldrin	309-00-2	5 ug/kg	RESULTS ug/kg
α - BHC	319-84-6	5 dg/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)		5 ug/kg	<5
	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	102
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	<5
4,4'-DDT	50-29-3	5 ug/kg	
Dieldrin	60-57-1		<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate		5 ug/kg	<5
Endrin	1031-07-8	5 ug/kg	<5
	72-20 - 8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	
Toxaphene	8001-35-2		<5
Endrin ketone	53494-70-5	200 ug/kg	<200
MDL = Minimum Detection Limit.		5 ug/kg	<5

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-4)	
Date received: 5/23/06	Laboratory ID: 1109689	
Date extracted: 5/27/06	Matrix: Soil	
Date analyzed: 5/27/06	ELAP #: 11693	

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-6)
Date received: 5/23/06	Laboratory ID: 1109688
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<50
CHLOROMETHANE	74-87-3	5 ug/kg	<50
VINYL CHLORIDE	75-01-4	5 ug/kg	<50
BROMOMETHANE	74-83-9	5 ug/kg	<50
CHLOROETHANE	75-00-3	5 ug/kg	<50
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<50
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<50
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<50
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<50
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<50
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<50
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<50
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<50
CHLOROFORM	67-66-3	5 ug/kg	<50
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<50
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<50
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<50
BENZENE	71-43-2	5 ug/kg	<50
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<50
TRICHLOROETHENE	79-01-6	5 ug/kg	<50
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<50
DIBROMOMETHANE	74-95-3	5 ug/kg	<50
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<50
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<50
TOLUENE	108-88-3	5 ug/kg	152
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<50
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<50
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<50
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<50
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<50
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<50
CHLOROBENZENE	108-90-7	5 ug/kg	<50
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<50
ETHYLBENZENE	100-41-4	5 ug/kg	<50
STYRENE	100-42-5	5 ug/kg	<50
BROMOFORM	75-25-2	5 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(SS-6)
Date received: 5/23/06	Laboratory ID: 1109688
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

S.C.D.H. VOLATILES

ISOPROPYLBENZENE	PARAMETER	CAS No.	MDL	RESULTS ug/kg
BROMOBENZENE 108-86-1 5 ug/kg <50	ISOPROPYLBENZENE	98-82-8	5 ug/kg	<50
1,2,3-TRICHLOROPROPANE 96-18-4 5 ug/kg <50	BROMOBENZENE	108-86-1	5 ug/kg	<50
n-PROPYLBENZENE 103-65-1 5 ug/kg <50 2-CHLOROTOLUENE 95-49-8 5 ug/kg <50	1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<50
n-PROPYLBENZENE 103-65-1 5 ug/kg <50 2-CHLOROTOLUENE 95-49-8 5 ug/kg <50	1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<50
4-CHLOROTOLUENE 106-43-4 5 ug/kg <50	n-PROPYLBENZENE	103-65-1	5 ug/kg	<50
1,3,5-TRIMETHYLBENZENE 108-67-8 5 ug/kg 147 tert-BUTYLBENZENE 98-06-6 5 ug/kg <50	2-CHLOROTOLUENE	95-49-8	5 ug/kg	<50
tert-BUTYLBENZENE 98-06-6 5 ug/kg <50 1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg 166 sec-BUTYLBENZENE 135-98-8 5 ug/kg <50	4-CHLOROTOLUENE	106-43-4	5 ug/kg	<50
1,2,4-TRIMETHYLBENZENE 95-63-6 5 ug/kg 166 sec-BUTYLBENZENE 135-98-8 5 ug/kg <50	1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	147
sec-BUTYLBENZENE 135-98-8 5 ug/kg <50 1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <50	tert-BUTYLBENZENE	98-06-6	5 ug/kg	<50
1,3-DICHLOROBENZENE 541-73-1 5 ug/kg <50	1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	166
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg 57 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <50	sec-BUTYLBENZENE	135-98-8	5 ug/kg	<50
P-ISOPROPYLTOLUENE 99-87-6 5 ug/kg 57 1,4-DICHLOROBENZENE 106-46-7 5 ug/kg <50	1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<50
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <50	P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	57
1,2-DICHLOROBENZENE 95-50-1 5 ug/kg <50	1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<50
1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 5 ug/kg <50	1,2-DICHLOROBENZENE	95-50-1		<50
1,2,4-TRICHLOROBENZENE 120-82-1 5 ug/kg <50	n-BUTYLBENZENE	104-51-8	5 ug/kg	<50
HEXACHLOROBUTADIENE 87-68-3 5 ug/kg <50 NAPHTHALENE 91-20-3 5 ug/kg 100 1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <50	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<50
NAPHTHALENE 91-20-3 5 ug/kg 100 1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <50	1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<50
1,2,3-TRICHLOROBENZENE 87-61-6 5 ug/kg <50	HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<50
2-CHLOROETHYLVINYL ETHER 110-75-8 5 ug/kg <50	NAPHTHALENE	91-20-3	5 ug/kg	100
FREON 113 76-13-1 5 ug/kg <50 p-DIETHYLBENZENE 105-05-5 5 ug/kg <50	1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<50
p-DIETHYLBENZENE 105-05-5 5 ug/kg <50 p-ETHYLTOLUENE 622-96-8 5 ug/kg <50	2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<50
p-ETHYLTOLUENE 622-96-8 5 ug/kg <50 1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg 82 ACETONE 67-64-1 50 ug/kg <500	FREON 113	76-13-1	5 ug/kg	<50
1,2,4,5-TETRAMETHYLBENZENE 95-93-2 5 ug/kg 82 ACETONE 67-64-1 50 ug/kg <500	p-DIETHYLBENZENE	105-05-5	5 ug/kg	<50
ACETONE 67-64-1 50 ug/kg <500 CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <50 METHYL ETHYL KETONE 78-93-3 10 ug/kg <100 METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <50 p & m-XYLENE 1330-20-7 10 ug/kg <100 o-XYLENE 1330-20-7 5 ug/kg 65	p-ETHYLTOLUENE	622-96-8	5 ug/kg	<50
CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <50 METHYL ETHYL KETONE 78-93-3 10 ug/kg <100	1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	82
CHLORODIFLUOROMETHANE 75-45-6 5 ug/kg <50 METHYL ETHYL KETONE 78-93-3 10 ug/kg <100	ACETONE	67-64-1	50 ug/kg	<500
METHYL ISOBUTYL KETONE 108-10-1 5 ug/kg <50 p & m-XYLENE 1330-20-7 10 ug/kg <100	CHLORODIFLUOROMETHANE	75-45-6		<50
p & m-XYLENE 1330-20-7 10 ug/kg <100 o-XYLENE 1330-20-7 5 ug/kg 65	METHYL ETHYL KETONE	78-93-3		<100
p & m-XYLENE 1330-20-7 10 ug/kg <100 o-XYLENE 1330-20-7 5 ug/kg 65	METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<50
o-XYLENE 1330-20-7 5 ug/kg 65	p & m-XYLENE	1330-20-7		<100
MTBE 1634-04-4 5 ug/kg <50	o-XYLENE	1330-20-7	5 ug/kg	65
	MTBE	1634-04-4	5 ug/kg	<50

MDL = Minimum Detection Limit.

MDL's raised due to non-target compound interference.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-6)
Date received: 5/23/06	Laboratory ID: 1109688
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	1,140
Fluorene	86-73-7	40 ug/kg	381
Phenanthrene	85-01-8	40 ug/kg	4,612
Pyrene	129-00-0	40 ug/kg	4,313
Acenaphthene	83-32-9	40 ug/kg	328
Benzo(a)Anthracene	56-55-3	40 ug/kg	2,213
Fluoranthene	206-44-0	40 ug/kg	5,319
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	2,568
Benzo(k)fluoranthene	207-08-9	40 ug/kg	889
Chrysene	218-01-9	40 ug/kg	2,632
Benzo(a)Pyrene	50-32-8	40 ug/kg	1,792
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	1,039
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	1,136
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	221

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-6)
Date received: 5/23/06	Laboratory ID: 1109688
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	3.59
COPPER, Cu	1.65 mg/kg	26.1
MERCURY, Hg	0.020 mg/kg	2.039
NICKEL, Ni	1.65 mg/kg	<1.65
LEAD, Pb	1.65 mg/kg	10.1

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-6)	
Date received: 5/23/06	Laboratory ID: 1109688	
Date extracted: 5/31/06	Matrix: Soil	
Date analyzed: 5/31/06	ELAP #: 11693	

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	12,505
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	14
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5
MDL = Minimum Detection Limit		Coloulet	

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-6)	
Date received: 5/23/06	Laboratory ID: 1109688	
Date extracted: 5/27/06	Matrix: Soil	
Date analyzed: 5/27/06	ELAP #: 11693	

EPA METHOD 8151

CAS#	MDL	RESULTS ug/kg
1918-00-9	50 ug/kg	<50
94-75-7		<50
93-72-1		<50
93-76-5		<50
94-82-6		<50
1861-32-1		<50
	1918-00-9 94-75-7 93-72-1 93-76-5 94-82-6	1918-00-9 50 ug/kg 94-75-7 50 ug/kg 93-72-1 50 ug/kg 93-76-5 50 ug/kg 94-82-6 50 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-7)
Date received: 5/23/06	Laboratory ID: 1109690
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
CHLOROMETHANE	74-87-3	5 ug/kg	<5	
VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
BROMOMETHANE	74-83-9	5 ug/kg	<5	
CHLOROETHANE	75-00-3	5 ug/kg	<5	•
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/kg	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/kg	<5	··
METHYLENE CHLORIDE	75-09-2	5 ug/kg	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/kg	<5	•
1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/kg	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/kg	<5	
CHLOROFORM	67-66 - 3	5 ug/kg	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/kg	<5	
BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/kg	<5	
DIBROMOMETHANE	74-95-3	5 ug/kg	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/kg	<5	
TOLUENE	108-88-3	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/kg	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/kg	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
CHLOROBENZENE	108-90-7	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/kg	<5	
ETHYLBENZENE	100-41-4	5 ug/kg	<5	
STYRENE	100-42-5	5 ug/kg	<5	
BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(SS-7)
Date received: 5/23/06	Laboratory ID: 1109690
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

S.C.D.H. VOLATILES

		RESULTS ug/kg
98-82-8	5 ug/kg	<5
108-86-1	5 ug/kg	<5
79-34-5		<5
96-18-4		<5
103-65-1		<5
95-49-8		<5
106-43-4		<5
108-67-8	5 ug/kg	<5
98-06-6	5 ug/kg	<5
95-63-6		<5
135-98-8		<5
541-73-1		<5
99-87-6	5 ug/kg	<5
106-46-7	5 ug/kg	<5
95-50-1	5 ug/kg	<5
104-51-8	5 ug/kg	<5
96-12-8		<5
120-82-1		<5
87-68-3	5 ug/kg	<5
91-20-3	5 ug/kg	<5
87-61-6	5 ug/kg	<5
110-75-8	5 ug/kg	<5
76-13-1	5 ug/kg	<5
105-05-5	5 ug/kg	<5
622-96-8	5 ug/kg	<5
95-93-2	5 ug/kg	<5
67-64-1	50 ug/kg	<50
75-45-6	5 ug/kg	<5
78-93-3	10 ug/kg	<10
108-10-1	5 ug/kg	<5
1330-20-7	10 ug/kg	<10
1330-20-7	5 ug/kg	<5
1634-04-4	5 ug/kg	<5
	108-86-1 79-34-5 96-18-4 103-65-1 95-49-8 106-43-4 108-67-8 98-06-6 95-63-6 135-98-8 541-73-1 99-87-6 106-46-7 95-50-1 104-51-8 96-12-8 120-82-1 87-68-3 91-20-3 87-61-6 110-75-8 76-13-1 105-05-5 622-96-8 95-93-2 67-64-1 75-45-6 78-93-3 108-10-1 1330-20-7	108-86-1 5 ug/kg 79-34-5 5 ug/kg 96-18-4 5 ug/kg 103-65-1 5 ug/kg 95-49-8 5 ug/kg 106-43-4 5 ug/kg 108-67-8 5 ug/kg 98-06-6 5 ug/kg 95-63-6 5 ug/kg 135-98-8 5 ug/kg 541-73-1 5 ug/kg 99-87-6 5 ug/kg 106-46-7 5 ug/kg 95-50-1 5 ug/kg 104-51-8 5 ug/kg 120-82-1 5 ug/kg 120-82-1 5 ug/kg 120-83-3 5 ug/kg 10-75-8 5 ug/kg 105-05-5 5 ug/kg 105-05-5 5 ug/kg 622-96-8 5 ug/kg 95-93-2 5 ug/kg 75-45-6 5 ug/kg 78-93-3 10 ug/kg 108-10-1 5 ug/kg 1330-20-7 10 ug/kg 1330-20-7 5 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (SS-7)	
Date received: 5/23/06	Laboratory ID: 1109690	
Date extracted: 5/25/06	Matrix: Soil	
Date analyzed: 5/25/06	ELAP #: 11693	

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	44
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	173
Pyrene	129-00-0	40 ug/kg	626
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	447
Fluoranthene	206-44-0	40 ug/kg	576
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	478
Benzo(k)fluoranthene	207-08-9	40 ug/kg	146
Chrysene	218-01-9	40 ug/kg	606
Benzo(a)Pyrene	50-32-8	40 ug/kg	359
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	197
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	180
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	45

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue	
·	(SS-7)	
Date received: 5/23/06	Laboratory ID: 1109690	
Date extracted: 5/24, 5/25/06	Matrix: Soil	
Date analyzed: 5/24, 5/25/06	ELAP #: 11693	

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	<1.65
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	<1.00
CHROMIUM, Cr	1.65 mg/kg	4.54
COPPER, Cu	1.65 mg/kg	64.4
MERCURY, Hg	0.020 mg/kg	0.274
NICKEL, NI	1.65 mg/kg	2.79
LEAD, Pb	1.65 mg/kg	46.7

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

Michael Veraldi-Laboratory Director

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	(SS-7) Laboratory ID: 1109690
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	DECLUTO "
Aldrin	309-00-2		RESULTS ug/kg
α - BHC	319-84-6	5 ug/kg 5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8		<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	5 ug/kg	<5
4,4'- DDD	72-54-8	15 ug/kg	31
4,4'-DDE		5 ug/kg	<5
4,4'-DDT	72-55-9	5 ug/kg	<5
	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	<5
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	
Endosulfan sulfate	1031-07-8		<5
Endrin	72-20-8	5 ug/kg	<u></u> <5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor		5 ug/kg	<5
Heptachlor epoxide	76-44-8	5 ug/kg	<5
4 4' Made	1024-57-3	5 ug/kg	<5
4,4'-Methoxychlor	72 - 43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	
Endrin ketone	53494-70 5	5 ua/ka	<200
MDL = Minimum Detection Limit	== .5	5 ug/kg	<5

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(SS-7)
Date received: 5/23/06	Laboratory ID: 1109690
Date extracted: 5/27/06	Matrix: Soil
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 8151

PARAMETER	CAS#	MDL	RESULTS ug/kg
DICAMBA	1918-00-9	50 ug/kg	<50
2,4-D	94-75-7	50 ug/kg	<50
SILVEX(2,4,5-TP)	93-72-1	50 ug/kg	<50
2,4,5-T	93-76-5	50 ug/kg	<50
2,4-DB	94-82-6	50 ug/kg	<50
DACTHAL	1861-32-1	50 ug/kg	<50

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (Pit-1)
Date received: 5/23/06	Laboratory ID: 1109687
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

S.C.D.H. VOLATILES

DICHLORODIFLUOROMETHANE 75-71-8 5 ug/kg <5	PARAMETER	CAS No.	MDL	RESULTS	ug/kg
VINYL CHLORIDE 75-01-4 5 ug/kg <5 BROMOMETHANE 74-83-9 5 ug/kg <5	DICHLORODIFLUOROMETHANE	75-71-8	5 ug/kg	<5	
BROMOMETHANE 74-83-9 5 ug/kg <5 CHLOROETHANE 75-00-3 5 ug/kg <5	CHLOROMETHANE	74-87-3	5 ug/kg	<5	
BROMOMETHANE 74-83-9 5 ug/kg <5 CHLOROETHANE 75-00-3 5 ug/kg <5	VINYL CHLORIDE	75-01-4	5 ug/kg	<5	
CHLOROETHANE 75-00-3 5 ug/kg <5 TRICHLOROFLUOROMETHANE 75-69-4 5 ug/kg <5	BROMOMETHANE	74-83-9		<5	
TRICHLOROFILUOROMETHANE 75-69-4 5 ug/kg <5 1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	CHLOROETHANE	75-00-3		<5	
1,1-DICHLOROETHENE 75-35-4 5 ug/kg <5	TRICHLOROFLUOROMETHANE	75-69-4		<5	•
METHYLENE CHLORIDE 75-09-2 5 ug/kg <5	1,1-DICHLOROETHENE	75-35-4		<5	
trans-1,2-DICHLOROETHENE 156-60-5 5 ug/kg <5	METHYLENE CHLORIDE	75-09-2		<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/kg <5	trans-1,2-DICHLOROETHENE	156-60-5		<5	
Cis-1,2-DICHLOROETHENE 156-59-2 5 ug/kg <5	1,1-DICHLOROETHANE	75-34-3	5 ug/kg	<5	
cis-1,2-DICHLOROETHENE 156-59-2 5 ug/kg <5 BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5	2,2-DICHLOROPROPANE	594-20-7	5 ug/kg	<5	
BROMOCHLOROMETHANE 74-97-5 5 ug/kg <5 CHLOROFORM 67-66-3 5 ug/kg <5	cis-1,2-DICHLOROETHENE	156-59-2		<5	
1,1,1-TRICHLOROETHANE 71-55-6 5 ug/kg <5	BROMOCHLOROMETHANE	74-97-5		<5	
CARBON TETRACHLORIDE 56-23-5 5 ug/kg <5	CHLOROFORM	67-66-3	5 ug/kg	<5	
1,1-DICHLOROPROPENE 563-58-6 5 ug/kg <5	1,1,1-TRICHLOROETHANE	71-55-6	5 ug/kg	<5	•
BENZENE 71-43-2 5 ug/kg <5 1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	CARBON TETRACHLORIDE	56-23-5	5 ug/kg	<5	
1,2-DICHLOROETHANE 107-06-2 5 ug/kg <5	1,1-DICHLOROPROPENE	563-58-6		<5	
TRICHLOROETHENE 79-01-6 5 ug/kg <5 1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	BENZENE	71-43-2	5 ug/kg	<5	
1,2-DICHLOROPROPANE 78-87-5 5 ug/kg <5	1,2-DICHLOROETHANE	107-06-2	5 ug/kg	<5	
DIBROMOMETHANE 74-95-3 5 ug/kg <5 BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5	TRICHLOROETHENE	79-01-6	5 ug/kg	<5	
BROMODICHLOROMETHANE 75-27-4 5 ug/kg <5 cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5		78-87-5	5 ug/kg	<5	
cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/kg <5 TOLUENE 108-88-3 5 ug/kg <5		74-95-3	5 ug/kg	<5	
TOLUENE 108-88-3 5 ug/kg <5 trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5		75-27-4	5 ug/kg	<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5	cis-1,3-DICHLOROPROPENE	10061-01-5		<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/kg <5		108-88-3	5 ug/kg	<5	
TETRACHLOROETHYLENE 127-18-4 5 ug/kg <5	trans-1,3-DICHLOROPROPENE	10061-02-6		<5	
1,3-DICHLOROPROPANE 142-28-9 5 ug/kg <5	1,1,2-TRICHLOROETHANE	79-00-5	5 ug/kg	<5	
DIBROMOCHLOROMETHANE 124-48-1 5 ug/kg <5 1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5	TETRACHLOROETHYLENE	127-18-4	5 ug/kg	<5	
1,2-DIBROMOETHANE 106-93-4 5 ug/kg <5		142-28-9	5 ug/kg	<5	•
CHLOROBENZENE 108-90-7 5 ug/kg <5	DIBROMOCHLOROMETHANE	124-48-1	5 ug/kg	<5	
1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/kg <5	1,2-DIBROMOETHANE	106-93-4	5 ug/kg	<5	
ETHYLBENZENE 100-41-4 5 ug/kg <5 STYRENE 100-42-5 5 ug/kg <5				<5	
STYRENE 100-42-5 5 ug/kg <5		630-20-6	5 ug/kg	<5	
			5 ug/kg	<5	
BROMOFORM 75-25-2 5 ug/kg <5					
	BROMOFORM	75-25-2	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(Pit-1)
Date received: 5/23/06	Laboratory ID: 1109687
Date extracted: 5/24/06	Matrix: Soil
Date analyzed: 5/24/06	ELAP #: 11693

S.C.D.H. VOLATILES

PARAMETER	CAS No.	MDL	RESULTS	ug/kg
ISOPROPYLBENZENE	98-82-8	5 ug/kg	<5	
BROMOBENZENE	108-86-1	5 ug/kg	<5	-
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/kg	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/kg	<5	
n-PROPYLBENZENE	103-65-1	5 ug/kg	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/kg	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/kg	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/kg	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/kg	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/kg	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/kg	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/kg	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/kg	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/kg	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/kg	<5	
n-BUTYLBENZENE	104-51-8	5 ug/kg	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/kg	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/kg	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/kg	<5	
NAPHTHALENE	91-20-3	5 ug/kg	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/kg	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/kg	<5	
FREON 113	76-13-1	5 ug/kg	<5	
p-DIETHYLBENZENE	105-05-5	5 ug/kg	<5	
p-ETHYLTOLUENE	622-96-8	5 ug/kg	<5	
1,2,4,5-TETRAMETHYLBENZENE	95-93-2	5 ug/kg	<5	
ACETONE	67-64-1	50 ug/kg	<50	
CHLORODIFLUOROMETHANE	75-45-6	5 ug/kg	<5	
METHYL ETHYL KETONE	78-93-3	10 ug/kg	<10	,
METHYL ISOBUTYL KETONE	108-10-1	5 ug/kg	<5	
p & m-XYLENE	1330-20-7	10 ug/kg	<10	
o-XYLENE	1330-20-7	5 ug/kg	<5	
MTBE	1634-04-4	5 ug/kg	<5	

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

77 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (Pit-1)
Date received: 5/23/06	Laboratory ID: 1109687
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

SCDH SEMI-VOLATILE ANALYSIS

Parameter	CAS No.	MDL	Results ug/kg
Anthracene	120-12-7	40 ug/kg	<40
Fluorene	86-73-7	40 ug/kg	<40
Phenanthrene	85-01-8	40 ug/kg	76
Pyrene	129-00-0	40 ug/kg	172
Acenaphthene	83-32-9	40 ug/kg	<40
Benzo(a)Anthracene	56-55-3	40 ug/kg	104
Fluoranthene	206-44-0	40 ug/kg	197
Benzo(b)Fluoranthene	205-99-2	40 ug/kg	154
Benzo(k)fluoranthene	207-08-9	40 ug/kg	62
Chrysene	218-01-9	40 ug/kg	127
Benzo(a)Pyrene	50-32-8	40 ug/kg	101
Benzo(g,h,i)Perylene	191-24-2	40 ug/kg	130
Indeno(1,2,3-cd)Pyrene	193-39-5	40 ug/kg	
Dibenzo(a,h)Anthracene	53-70-3	40 ug/kg	108 <40
DI = Minimum Detection Limit	<u> </u>		\

WDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(Pit-1)
Date received: 5/23/06	Laboratory ID: 1109687
Date extracted: 5/24, 5/25/06	Matrix: Soil
Date analyzed: 5/24, 5/25/06	ELAP #: 11693

METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/kg
SILVER, Ag	1.65 mg/kg	<1.65
ARSENIC, As	1.65 mg/kg	3.38
BERYLLIUM, Be	1.65 mg/kg	<1.65
CADMIUM, Cd	1.00 mg/kg	1.14
CHROMIUM, Cr	1.65 mg/kg	20.9
COPPER, Cu	1.65 mg/kg	32.0
MERCURY, Hg	0.020 mg/kg	0.391
NICKEL, NI	1.65 mg/kg	7.78
LEAD, Pb	1.65 mg/kg	47.0

MDL = Minimum Detection Limit. Analysis by SW-846 Method 6010 Calculated on a wet weight basis

79 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (Pit-1)		
Date received: 5/23/06	Laboratory ID: 1109687		
Date extracted: 5/25/06	Matrix: Soil		
Date analyzed: 5/25/06	ELAP #: 11693		

PESTICIDES EPA METHOD 8081

COMPOUND	CAS No.	MDL	RESULTS ug/kg
Aldrin	309-00-2	5 ug/kg	<5
α - BHC	319-84-6	5 ug/kg	<5
β - BHC	319-85-7	5 ug/kg	<5
δ - BHC	319-86-8	5 ug/kg	<5
γ - BHC (Lindane)	58-89-9	5 ug/kg	<5
Chlordane	12789-03-6	15 ug/kg	510
4,4'- DDD	72-54-8	5 ug/kg	<5
4,4'-DDE	72-55-9	5 ug/kg	7.8
4,4'-DDT	50-29-3	5 ug/kg	<5
Dieldrin	60-57-1	5 ug/kg	14
Endosulfan I	959-98-8	5 ug/kg	<5
Endosulfan II	33212-65-9	5 ug/kg	<5
Endosulfan sulfate	1031-07-8	5 ug/kg	<5
Endrin	72-20-8	5 ug/kg	<5
Endrin aldehyde	7421-93-4	5 ug/kg	<5
Heptachlor	76-44-8	5 ug/kg	<5
Heptachlor epoxide	1024-57-3	5 ug/kg	9.1
4,4'-Methoxychlor	72-43-5	5 ug/kg	<5
Toxaphene	8001-35-2	200 ug/kg	<200
Endrin ketone	53494-70-5	5 ug/kg	<5

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Dil	(Pit-1)
Date received: 5/23/06	Laboratory ID: 1109687
Date extracted: 5/27/06	Matrix: Soil
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 8151

CAS#	MDL	RESULTS ug/kg
1918-00-9		<50
94-75-7		<50
93-72-1		<50
93-76-5		<50
94-82-6		<50
1861-32-1		<50
	1918-00-9 94-75-7 93-72-1 93-76-5 94-82-6	1918-00-9 50 ug/kg 94-75-7 50 ug/kg 93-72-1 50 ug/kg 93-76-5 50 ug/kg 94-82-6 50 ug/kg

MDL = Minimum Detection Limit.

Calculated on a wet weight basis

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (UST-M)
Date received: 5/23/06	Laboratory ID: 1109720
Date extracted: 5/25/06	Matrix: Soil
Date analyzed: 5/25/06	ELAP #: 11693

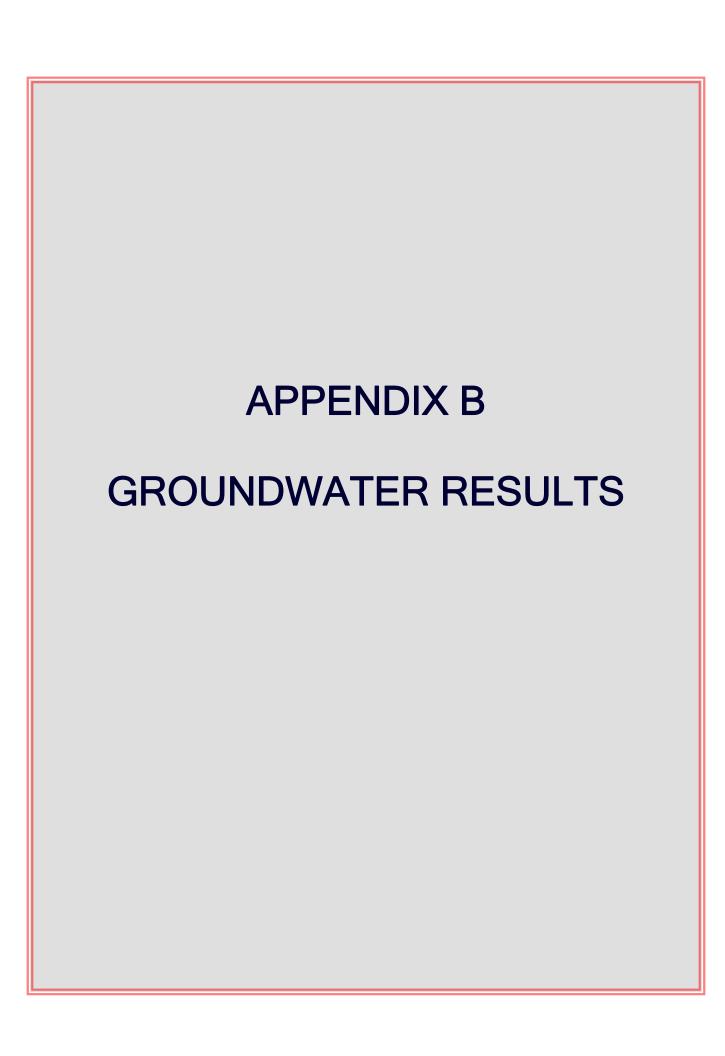
EPA METHOD 8021 (STARS)

Parameter	CAS No.	MDL	Results ug/kg
MTBE	1634-04-4	5 ug/kg	
Benzene	71-43-2	5 ug/kg	<5 <5
n-Butylbenzene	104-51-8	5 ug/kg	
sec-Butylbenzene	135-98-7	5 ug/kg	<5
tert-Butylbenzene	98-06-8	5 ug/kg	<5
Isopropylbezene	98-82-8	5 ug/kg	<5
p-Isopropyltoluene	99-87-6	5 ug/kg	<5
n-Propylbenzene	103-65-1	5 ug/kg	<5
Ethylbenzene	100-41-4	5 ug/kg	<5
Naphthalene	91-20-3	5 ug/kg	<5
Toluene	108-88-3	5 ug/kg	<5
1,2,4-Trimethylbenzene	95-63-6		<5
1,3,5-Trimethylbenzene	108-67-8	5 ug/kg	<5
p & m-Xylenes	1330-20-7	5 ug/kg	<5
o-Xylene	1330-20-7	10 ug/kg	<10
IDL = Minimum Detection Limit.	1000-20-1	5 ug/kg	<5

Michael Verail

94 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (UST-M)
Date received: 5/23/06	Laboratory ID: 1109720
Date extracted: 5/26/06	Matrix: Soil
Date analyzed: 5/26/06	ELAP #: 11693


EPA METHOD 8270 (STARS)

CAS No.	MDL	Results ug/kg
91-20-3	5 ug/kg	<5
120-12-7		<5
86-73-7		<5
85-01-8		<5
129-00-0	<u></u>	<5
83-32-9		<5
56-55-3		<5
206-44-0		<5
205-99-2		<5
207-08-9		<5
218-01-9		<5
50-32-8		<5
191-24-2		<5
193-39-5		<5
53-70-3		<5
	91-20-3 120-12-7 86-73-7 85-01-8 129-00-0 83-32-9 56-55-3 206-44-0 205-99-2 207-08-9 218-01-9 50-32-8 191-24-2 193-39-5	91-20-3 5 ug/kg 120-12-7 5 ug/kg 86-73-7 5 ug/kg 85-01-8 5 ug/kg 129-00-0 5 ug/kg 83-32-9 5 ug/kg 56-55-3 5 ug/kg 206-44-0 5 ug/kg 205-99-2 5 ug/kg 207-08-9 5 ug/kg 218-01-9 5 ug/kg 50-32-8 5 ug/kg 191-24-2 5 ug/kg

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-1)
Date received: 5/23/06	Laboratory ID: 1109685
Date extracted: 5/23/06	Matrix: Liquid
Date analyzed: 5/23/06	ELAP #: 11693

EPA METHOD 524.2

Parameter	CAS No.	MDL	Results ug/L
ACETONE	62-64-1	5.00 ug/L	<5.00
BENZENE	71-43-2	0.50 ug/L	<0.50
BROMOBENZENE	108-86-1	0.50 ug/L	< 0.50
BROMOCHLOROMETHANE	74-97-5	0.50 ug/L	<0.50
BROMODICHLOROMETHANE	75-27-4	0.50 ug/L	<0.50
BROMOFORM	75-25-2	0.50 ug/L	<0.50
BROMOMETHANE	74-83-9	0.50 ug/L	<0.50
2-BUTANONE (MEK)	78-93-3	1.00 ug/L	1.44
n-BUTYLBENZENE	104-51-8	0.50 ug/L	<0.50
sec-BUTYLBENZENE	135-98-8	0.50 ug/L	<0.50
tert-BUTYLBENZENE	98-06-6	0.50 ug/L	<0.50
CARBON DISULFIDE	75-15-0	0.50 ug/L	<0.50
CARBON TETRACHLORIDE	56-23-5	0.50 ug/L	<0.50
CHLOROBENZENE	108-90-7	0.50 ug/L	< 0.50
CHLOROETHANE	75-00-3	0.50 ug/L	<0.50
CHLOROFORM	67-66-3	0.50 ug/L	< 0.50
CHLOROMETHANE	74-87-3	0.50 ug/L	<0.50
2-CHLOROTOLUENE	95-49-8	0.50 ug/L	< 0.50
4-CHLOROTOLUENE	106-43-4	0.50 ug/L	<0.50
CHLORODIBROMOMETHANE	124-48-1	0.50 ug/L	<0.50
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.50 ug/L	<0.50
1,2-DIBROMOETHANE	106-93-4	0.50 ug/L	<0.50
DIBROMOMETHANE	74-95-3	0.50 ug/L	<0.50
1,2-DICHLOROBENZENE	95-50-1	0.50 ug/L	<0.50
1,3-DICHLOROBENZENE	541-73-1	0.50 ug/L	<0.50
1,4-DICHLOROBENZENE	106-46-7	0.50 ug/L	<0.50
DICHLORODIFLUOROMETHANE	75-71-8	0.50 ug/L	<0.50
1,1-DICHLOROETHANE	75-34-3	0.50 ug/L	<0.50
1,2-DICHLOROETHANE	107-06-2	0.50 ug/L	<0.50
1,1-DICHLOROETHENE	75-35-4	0.50 ug/L	<0.50
cis-1,2-DICHLOROETHENE	156-59-2	0.50 ug/L	<0.50
trans-1,2-DICHLOROETHENE	156-60-5	0.50 ug/L	<0.50
1,2-DICHLOROPROPANE	78-87-5	0.50 ug/L	<0.50
1,3-DICHLOROPROPANE	142-28-9	0.50 ug/L	<0.50
2,2-DICHLOROPROPANE	594-20-7	0.50 ug/L	<0.50
1,1-DICHLOROPROPENE	563-58-6	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-1)
Date received: 5/23/06	Laboratory ID: 1109685
Date extracted: 5/23/06	Matrix: Liquid
Date analyzed: 5/23/06	ELAP #: 11693

EPA METHOD 524.2

Parameter Parameter	CAS No.	MDL	Results ug/L
cis[Z]-1,3-DICHLOROPROPENE	10061-01-5	0.50 ug/L	<0.50
Trans[E]-1,3-DICHLOROPROPENE	10061-02-6	0.50 ug/L	<0.50
ETHYLBENZENE	100-41-4	0.50 ug/L	< 0.50
HEXACHLOROBUTADIENE	87-68-3	0.50 ug/L	<0.50
2-HEXANONE	591-78-6	0.50 ug/L	<0.50
ISOPROPYLBENZENE	98-82-8	0.50 ug/L	<0.50
p-ISOPROPYLTOLUENE	99-87-6	0.50 ug/L	<0.50
METHYLENE CHLORIDE	75-09-2	0.50 ug/L	<0.50
METHYL ISOBUTYL KETONE (MIBK)	108-10-1	0.50 ug/L	<0.50
MTBE	1634-04-4	0.50 ug/L	<0.50
NAPHTHALENE	91-20-3	0.50 ug/L	<0.50
n-PROPYLBENZENE	103-65-1	0.50 ug/L	<0.50
STYRENE	100-42-5	0.50 ug/L	< 0.50
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.50 ug/L	< 0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.50 ug/L	<0.50
TETRACHLOROETHENE	127-18-4	0.50 ug/L	<0.50
TOLUENE	108-88-3	0.50 ug/L	<0.50
1,2,3-TRICHLOROBENZENE	87-61-6	0.50 ug/L	<0.50
1,2,4-TRICHLOROBENZENE	120-82-1	0.50 ug/L	<0.50
1,1,1-TRICHLOROETHANE	71-55-6	0.50 ug/L	<0.50
1,1,2-TRICHLOROETHANE	79-00-5	0.50 ug/L	<0.50
TRICHLOROETHENE	79-01-6	0.50 ug/L	<0.50
TRICHLOROFLUOROMETHANE	75-69-4	0.50 ug/L	<0.50
1,2,3-TRICHLOROPROPANE	96-18-4	0.50 ug/L	<0.50
1,2,4-TRIMETHYLBENZENE	95-63-6	0.50 ug/L	<0.50
1,3,5-TRIMETHYLBENZENE	108-67-8	0.50 ug/L	<0.50
VINYL CHLORIDE	75-01-4	0.50 ug/L	<0.50
p & m-XYLENE	1330-20-7	1.00 ug/L	<1.00
o-XYLENE	1330-20-7	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

59 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	(GW-1) Laboratory ID: 1109685
Date extracted: 6/6/06	Matrix: Liquid
Date analyzed: 6/6/06	ELAP #: 11693

EPA METHOD 314.0

PARAMETER	MDL	RESULTS ug/L
Perchlorate	4.0 ug/L	<4.0

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verald

60 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-1)
Date received: 5/23/06	Laboratory ID: 1109685
Date extracted: 5/24/06	Matrix: Liquid
Date analyzed: 5/24/06	ELAP #: 11693

EPA METHOD 525.2

PARAMETER	CAS No.	MDL	RESULTS ug/L
HEXACHLOROBENZENE	118-74-1	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)PHTALATE	117-81-7	1.0 ug/L	<1.0
BENZO-a-PYRENE	50-32-8	0.2 ug/L	<0.2
PENTACHLOROPHENOL	87-86-5	0.8 ug/L	<0.8
BUTACHLOR	23184-66-9	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)ADIPATE	103-23-1	0.2 ug/L	<0.2
HEXACHLOROCYCLOPENTADIENE	77-47-4	0.2 ug/L	<0.2

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-1)
Date received: 5/23/06	Laboratory ID: 1109685
Date extracted: 5/31/06	Matrix: Liquid
Date analyzed: 5/31/06	ELAP #: 11693

EPA METHOD 508/551

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALACHLOR	15972-60-8	0.1 ug/L	<0.1
ATRAZINE	1912-24-9	2 ug/L	<2
METOLACHLOR	51218-45-2	5.0 ug/L	<5.0
METRIBUXIN	21087-64-9	5.0 ug/L	<5.0
PROPACHLOR	1918-16-7	5.0 ug/L	<5.0
SIMAZINE	122-34-9	0.2 ug/L	<0.2
1,2-Dibromoethane	106-93-4	0.01 ug/L	<0.2
1,2-Dibromo-3-Chlorpropane	96-12-8	0.1 ug/L	<0.01
A A C \ L A A C C C		v. r ug/L	, ~ U. I

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-1)	
Date received: 5/23/06	Laboratory ID: 1109685	
Date extracted: 5/27/06	Matrix: Liquid	
Date analyzed: 5/27/06	ELAP #: 11693	

EPA METHOD 608

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALDRIN	309-00-2	0.01 ug/L	<0.01
<u>α - BHC</u>	319-84-6	0.01 ug/L	<0.01
β - BHC	319-85-7	0.01 ug/L	<0.01
δ - BHC	319-86-8	0.01 ug/L	<0.01
γ - BHC (Lindane)	58-89-9	0.02 ug/L	<0.02
CHLORDANE	12789-03-6	0.02 ug/L	0.26
4,4'-DDD	72-54-8	0.01 ug/L	<0.01
4,4'-DDE	72-55-9	0.01 ug/L	<0.01
4,4'-DDT	50-29-3	0.05 ug/L	<0.05
DIELDRIN	60-57-1	0.01 ug/L	<0.01
ENDOSULFAN I	959-98-8	0.01 ug/L	<0.01
ENDOSULFAN II	33212-65-9	0.01 ug/L	<0.01
ENDOSULFAN SULFATE	1031-07-8	0.02 ug/L	<0.02
ENDRIN	72-20-8	0.01 ug/L	<0.01
ENDRIN ALDEHYDE	7421-93-4	0.01 ug/L	<0.01
ENDRIN KETONE	53494-70-5	0.02 ug/L	<0.02
HEPTACHLOR	76-44-8	0.01 ug/L	<0.01
HEPTACHLOR EPOXIDE	1024-57-3	0.01 ug/L	<0.01
4,4'-METHOXYCHLOR	72-43-5	0.01 ug/L	<0.01
TOXAPHENE	8001-35-2	20 ug/L	<20
AROCLOR-1016	12674-11-2	20 ug/L	<20
AROCLOR-1221	1104-28-2	20 ug/L	<20
AROCLOR-1232	11141-16-5	20 ug/L	<20
AROCLOR-1242	53469-21-9	20 ug/L	<20
AROCLOR-1248	12672-29-6	20 ug/L	<20
AROCLOR-1254	1109769-1	20 ug/L	<20
AROCLOR-1260	11096-82-5	20 ug/L	<20

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Mishael Verail

63 of 98 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-1)	
Date received: 5/23/06	Laboratory ID: 1109685	
Date extracted: 5/31/06	Matrix: Liquid	
Date analyzed: 5/31/06	ELAP #: 11693	

EPA METHOD 515

PARAMETER	CAS No.	MDL	RESULTS ug/L
Dalapon	75990	20 ug/L	<20
Dicamba	1918009	1.0 ug/L	<1.0
2-,4-D	94757	5.0 ug/L	<5.0
2,4,5-TP (Silvex)	93721	5.0 ug/L	<5.0
Dinoseb	88857	0.5 ug/L	< 0.05
Picloram	1918021	5.0 ug/L	<5.0

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-1)
Date received: 5/23/06	Laboratory ID: 1109685
Date extracted: 5/24, 6/1/06	Matrix: Liquid
Date analyzed: 5/24, 6/1/06	ELAP #: 11693

TOTAL METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/L
SILVER, Ag	0.05 mg/L	<0.05
ALUMINUM, AI	0.05 mg/L	28.3
ARSENIC, As	0.05 mg/L	0.45
BARIUM, Ba	1.00 mg/L	<1.00
BERYLLIUM, Be	0.05 mg/L	<0.05
CALCIUM, Ca	0.05 mg/L	21.2
CADMIUM, Cd	0.05 mg/L	<0.05
COBALT, Co	0.05 mg/L	0.15
CHROMIUM, Cr	0.05 mg/L	1.86
COPPER, Cu	0.05 mg/L	0.97
IRON, Fe	0.05 mg/L	117
MERCURY, Hg	0.002 mg/L	<0.002
POTASSIUM, K	0.05 mg/L	4.95
MAGNESIUM, Mg	0.05 mg/L	7.75
MANGANESE, Mn	0.05 mg/L	5.76
MOLYBDENUM, Mo	0.05 mg/L	0.30
SODIUM, Na	0.05 mg/L	39.9
NICKEL, NI	0.05 mg/L	1.21
LEAD, Pb	0.005 mg/L	0.047
ANTIMONY, Sb	0.05 mg/L	<0.05
SELENIUM, Se	0.05 mg/L	<0.05
THALIUM, TI	0.05 mg/L	<0.05
VANADIUM, V	0.05 mg/L	0.08
ZINC, Zn	0.05 mg/L	6.69

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-1)		
Date received: 5/23/06	Laboratory ID: 1109685		
Date analyzed: See Below	Matrix: Liquid		

ANALYTICAL RESULTS

PARAMETER	METHOD	DATE ANALYZED	RESULTS
Chloride	EPA 300.0	5/24/06	62 mg/L
Sulfate (as SO4)	EPA 300.0	5/24/06	44 mg/L
Ammonia (as N)	SM 18 4500-NH3 C	5/26/06	<1.0 mg/L
Nitrate (as N)	EPA 300.0	5/24/06	<1.0 mg/L
Nitrite (as N)	EPA 300.0	5/24/06	<0.5 mg/L
Bromide	EPA 300.0	5/24/06	<1.0 mg/L
Orthophosphate (as P)	EPA 300.0	5/24/06	<1.0 mg/L
Fluoride, Total	EPA 300.0	5/24/06	<1.0 mg/L

Mishal Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-2)
Date received: 5/23/06	Laboratory ID: 1109703
Date extracted: 5/26/06	Matrix: Liquid
Date analyzed: 5/26/06	ELAP #: 11693

EPA METHOD 524.2

Parameter	CAS No.	MDL	Results ug/L
ACETONE	62-64-1	5.00 ug/L	<5.00
BENZENE	71-43-2	0.50 ug/L	<0.50
BROMOBENZENE	108-86-1	0.50 ug/L	<0.50
BROMOCHLOROMETHANE	74-97-5	0.50 ug/L	<0.50
BROMODICHLOROMETHANE	75-27-4	0.50 ug/L	<0.50
BROMOFORM	75-25-2	0.50 ug/L	<0.50
BROMOMETHANE	74-83-9	0.50 ug/L	<0.50
2-BUTANONE (MEK)	78-93-3	1.00 ug/L	<1.00
n-BUTYLBENZENE	104-51-8	0.50 ug/L	<0.50
sec-BUTYLBENZENE	135-98-8	0.50 ug/L	<0.50
tert-BUTYLBENZENE	98-06-6	0.50 ug/L	<0.50
CARBON DISULFIDE	75-15-0	0.50 ug/L	<0.50
CARBON TETRACHLORIDE	56-23-5	0.50 ug/L	<0.50
CHLOROBENZENE	108-90-7	0.50 ug/L	<0.50
CHLOROETHANE	75-00-3	0.50 ug/L	<0.50
CHLOROFORM	67-66-3	0,50 ug/L	1.70
CHLOROMETHANE	74-87-3	0.50 ug/L	<0.50
2-CHLOROTOLUENE	95-49-8	0.50 ug/L	< 0.50
4-CHLOROTOLUENE	106-43-4	0.50 ug/L	<0.50
CHLORODIBROMOMETHANE	124-48-1	0.50 ug/L	<0.50
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.50 ug/L	<0.50
1,2-DIBROMOETHANE	106-93-4	0.50 ug/L	<0.50
DIBROMOMETHANE	74-95-3	0.50 ug/L	<0.50
1,2-DICHLOROBENZENE	95-50-1	0.50 ug/L	<0.50
1,3-DICHLOROBENZENE	541-73-1	0.50 ug/L	<0.50
1,4-DICHLOROBENZENE	106-46-7	0.50 ug/L	<0.50
DICHLORODIFLUOROMETHANE	75-71-8	0.50 ug/L	<0.50
1,1-DICHLOROETHANE	75-34-3	0.50 ug/L	<0.50
1,2-DICHLOROETHANE	107-06-2	0.50 ug/L	<0.50
1,1-DICHLOROETHENE	75-35-4	0.50 ug/L	<0.50
cis-1,2-DICHLOROETHENE	156-59-2	0.50 ug/L	<0.50
trans-1,2-DICHLOROETHENE	156-60-5	0.50 ug/L	<0.50
1,2-DICHLOROPROPANE	78-87-5	0.50 ug/L	<0.50
1,3-DICHLOROPROPANE	142-28-9	0.50 ug/L	< 0.50
2,2-DICHLOROPROPANE	594-20-7	0.50 ug/L	<0.50
1,1-DICHLOROPROPENE	563-58-6	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-2)
Date received: 5/23/06	Laboratory ID: 1109703
Date extracted: 5/26/06	Matrix: Liquid
Date analyzed: 5/26/06	ELAP #: 11693

EPA METHOD 524.2

Parameter	CAS No.	MDL	Results ug/L
cis[Z]-1,3-DICHLOROPROPENE	10061-01-5	0.50 ug/L	<0.50
Trans[E]-1,3-DICHLOROPROPENE	10061-02-6	0.50 ug/L	<0.50
ETHYLBENZENE	100-41-4	0.50 ug/L	<0.50
HEXACHLOROBUTADIENE	87-68-3	0.50 ug/L	<0.50
2-HEXANONE	591-78-6	0.50 ug/L	<0.50
ISOPROPYLBENZENE	98-82-8	0.50 ug/L	<0.50
p-ISOPROPYLTOLUENE	99-87-6	0.50 ug/L	<0.50
METHYLENE CHLORIDE	75-09-2	0.50 ug/L	<0.50
METHYL ISOBUTYL KETONE (MIBK)	108-10-1	0.50 ug/L	<0.50
MTBE MTBE	1634-04-4	0.50 ug/L	<0.50
NAPHTHALENE	91-20-3	0.50 ug/L	< 0.50
n-PROPYLBENZENE	103-65-1	0.50 ug/L	<0.50
STYRENE	100-42-5	0.50 ug/L	< 0.50
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.50 ug/L	< 0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.50 ug/L	< 0.50
TETRACHLOROETHENE	127-18-4	0.50 ug/L	<0.50
TOLUENE	108-88-3	0.50 ug/L	< 0.50
1,2,3-TRICHLOROBENZENE	87-61-6	0.50 ug/L	<0.50
1,2,4-TRICHLOROBENZENE	120-82-1	0.50 ug/L	< 0.50
1,1,1-TRICHLOROETHANE	71-55-6	0.50 ug/L	<0.50
1,1,2-TRICHLOROETHANE	79-00-5	0.50 ug/L	<0.50
TRICHLOROETHENE	79-01-6	0.50 ug/L	<0.50
TRICHLOROFLUOROMETHANE	75-69-4	0.50 ug/L	<0.50
1,2,3-TRICHLOROPROPANE	96-18-4	0.50 ug/L	<0.50
1,2,4-TRIMETHYLBENZENE	95-63-6	0.50 ug/L	<0.50
1,3,5-TRIMETHYLBENZENE	108-67-8	0.50 ug/L	<0.50
VINYL CHLORIDE	75-01-4	0.50 ug/L	<0.50
p & m-XYLENE	1330-20-7	1.00 ug/L	<1.00
o-XYLENE	1330-20-7	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

37 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-2)
Date received: 5/23/06	Laboratory ID: 1109703
Date extracted: 6/2/06	Matrix: Liquid
Date analyzed: 6/2/06	ELAP #: 11693

EPA METHOD 314.0

PARAMETER	MDL	RESULTS ug/L
Perchlorate	4.0 ug/L	<4.0

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-2)
Date received: 5/23/06	Laboratory ID: 1109703
Date extracted: 5/24/06	Matrix: Liquid
Date analyzed: 5/24/06	ELAP #: 11693

EPA METHOD 525.2

PARAMETER	CAS No.	MDL	RESULTS ug/L
HEXACHLOROBENZENE	118-74-1	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)PHTALATE	117-81-7	1.0 ug/L	1.8
BENZO-a-PYRENE	50-32-8	0.2 ug/L	<0.2
PENTACHLOROPHENOL	87-86-5	0.8 ug/L	<0.8
BUTACHLOR	23184-66-9	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)ADIPATE	103-23-1	0.2 ug/L	<0.2
HEXACHLOROCYCLOPENTADIENE	77-47-4	0.2 ug/L	<0.2

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GW-2)
Date received: 5/23/06	Laboratory ID: 1109703
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 508/551

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALACHLOR	15972-60-8	0.1 ug/L	<0.1
ATRAZINE	1912-24-9	2 ug/L	<2
METOLACHLOR	51218-45-2	5.0 ug/L	<5.0
METRIBUXIN	21087-64-9	5.0 ug/L	<5.0
PROPACHLOR	1918-16-7	5.0 ug/L	<5.0
SIMAZINE	122-34-9	0.2 ug/L	<0.2
1,2-Dibromoethane	106-93-4	0.01 ug/L	<0.01
1,2-Dibromo-3-Chlorpropane	96-12-8	0.1 ug/L	<0.1
MADL - Minimum Dat (1)		J. Fug/L	

MDL = Minimum Detection Limit.

Michael Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-2)
Date received: 5/23/06	Laboratory ID: 1109703
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 608

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALDRIN	309-00-2	0.01 ug/L	<0.01
<u>α - BHC</u>	319-84-6	0.01 ug/L	<0.01
β - BHC	319-85-7	0.01 ug/L	<0.01
δ - BHC	319-86-8	0.01 ug/L	<0.01
γ - BHC (Lindane)	58-89-9	0.02 ug/L	<0.02
CHLORDANE	12789-03-6	0.02 ug/L	<0.02
4,4'-DDD	72-54-8	0.01 ug/L	<0.01
4,4'-DDE	72-55-9	0.01 ug/L	<0.01
4,4'-DDT	50-29-3	0.05 ug/L	<0.05
DIELDRIN	60-57-1	0.01 ug/L	<0.01
ENDOSULFAN I	959-98-8	0.01 ug/L	<0.01
ENDOSULFAN II	33212-65-9	0.01 ug/L	<0.01
ENDOSULFAN SULFATE	1031-07-8	0.02 ug/L	<0.02
ENDRIN	72-20-8	0.01 ug/L	<0.01
ENDRIN ALDEHYDE	7421-93-4	0.01 ug/L	<0.01
ENDRIN KETONE	53494-70-5	0.02 ug/L	<0.02
HEPTACHLOR	76-44-8	0.01 ug/L	<0.01
HEPTACHLOR EPOXIDE	1024-57-3	0.01 ug/L	<0.01
4,4'-METHOXYCHLOR	72-43-5	0.01 ug/L	<0.01
TOXAPHENE	8001-35-2	20 ug/L	<20
AROCLOR-1016	12674-11-2	20 ug/L	<20
AROCLOR-1221	1104-28-2	20 ug/L	<20
AROCLOR-1232	11141-16-5	20 ug/L	<20
AROCLOR-1242	53469-21-9	20 ug/L	<20
AROCLOR-1248	12672-29-6	20 ug/L	<20
AROCLOR-1254	1109769-1	20 ug/L	<20
AROCLOR-1260	11096-82-5	20 ug/L	<20

MDL = Minimum Detection Limit.

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-2)		
Date received: 5/23/06	Laboratory ID: 1109703		
Date extracted: 5/27/06	Matrix: Liquid		
Date analyzed: 5/27/06	ELAP #: 11693		

EPA METHOD 515

PARAMETER	CAS No.	MDL	RESULTS ug/L
Dalapon	75990	20 ug/L	<20
Dicamba	1918009	1.0 ug/L	<1.0
2-,4-D	94757	5.0 ug/L	<5.0
2,4,5-TP (Silvex)	93721	5.0 ug/L	<5.0
Dinoseb	88857	0.5 ug/L	< 0.05
Picloram	1918021	5.0 ug/L	<5.0

MDL = Minimum Detection Limit.

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-2)
Date received: 5/23/06	Laboratory ID: 1109703
Date extracted: 5/26, 6/1, 6/5/06	Matrix: Liquid
Date analyzed: 5/26, 6/1, 6/5/06	ELAP #: 11693

TOTAL METALS ANALYSIS

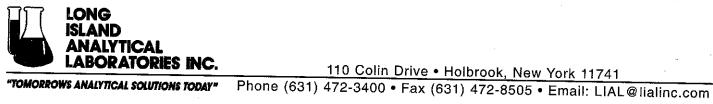
PARAMETER	MDL	RESULTS mg/L
SILVER, Ag	0.05 mg/L	<0.05
ALUMINUM, AI	0.05 mg/L	29.3
ARSENIC, As	0.05 mg/L	<0.05
BARIUM, Ba	1.00 mg/L	<1.00
BERYLLIUM, Be	0.05 mg/L	<0.05
CALCIUM, Ca	0.05 mg/L	18.6
CADMIUM, Cd	0.05 mg/L	<0.05
COBALT, Co	0.05 mg/L	<0.05
CHROMIUM, Cr	0.05 mg/L	0.28
COPPER, Cu	0.05 mg/L	0.32
IRON, Fe	0.05 mg/L	75.8
MERCURY, Hg	0.002 mg/L	<0.002
POTASSIUM, K	0.05 mg/L	3.33
MAGNESIUM, Mg	0.05 mg/L	7.24
MANGANESE, Mn	0.05 mg/L	1.72
MOLYBDENUM, Mo	0.05 mg/L	0.17
SODIUM, Na	0.05 mg/L	9.87
NICKEL, NI	0.05 mg/L	0.16
LEAD, Pb	0.005 mg/L	0.046
ANTIMONY, Sb	0.05 mg/L	<0.05
SELENIUM, Se	0.05 mg/L	<0.05
THALIUM, TI	0.05 mg/L	<0.05
VANADIUM, V	0.05 mg/L	0.10
ZINC, Zn	0.05 mg/L	1.34

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Mishael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-2)	
Date received: 5/23/06	Laboratory ID: 1109703	
Date analyzed: See Below	Matrix: Liquid	


ANALYTICAL RESULTS

PARAMETER	METHOD	DATE ANALYZED	RESULTS
Chloride	EPA 300.0	5/24/06	15 mg/L
Sulfate (as SO4)	EPA 300.0	5/24/06	63 mg/L
Ammonia (as N)	SM 18 4500-NH3 C	5/26/06	<1 mg/L
Nitrate (as N)	EPA 300.0	5/24/06	<1.0 mg/L
Nitrite (as N)	EPA 300.0	5/24/06	<0.5 mg/L
Bromide	EPA 300.0	5/24/06	<1.0 mg/L
Orthophosphate (as P)	EPA 300.0	5/24/06	<1.0 mg/L
Fluoride, Total	EPA 300.0	5/24/06	1.3 mg/L

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)
Date received: 5/23/06	Laboratory ID: 1109721
Date extracted: 5/26/06	Matrix: Liquid
Date analyzed: 5/26/06	ELAP #: 11693

Parameter Parameter	CAS No.	MDL	Results ug/L
ACETONE	62-64-1	5.00 ug/L	<5.00
BENZENE	71-43-2	0.50 ug/L	< 0.50
BROMOBENZENE	108-86-1	0.50 ug/L	< 0.50
BROMOCHLOROMETHANE	74-97-5	0.50 ug/L	< 0.50
BROMODICHLOROMETHANE	75-27-4	0.50 ug/L	<0.50
BROMOFORM	75-25-2	0.50 ug/L	<0.50
BROMOMETHANE	74-83-9	0.50 ug/L	<0.50
2-BUTANONE (MEK)	78-93-3	1.00 ug/L	<1.00
n-BUTYLBENZENE	104-51-8	0.50 ug/L	<0.50
sec-BUTYLBENZENE	135-98-8	0.50 ug/L	<0.50
tert-BUTYLBENZENE	98-06-6	0.50 ug/L	<0.50
CARBON DISULFIDE	75-15-0	0.50 ug/L	<0.50
CARBON TETRACHLORIDE	56-23-5	0.50 ug/L	<0.50
CHLOROBENZENE	108-90-7	0.50 ug/L	<0.50
CHLOROETHANE	75-00-3	0.50 ug/L	<0.50
CHLOROFORM	67-66-3	0.50 ug/L	<0.50
CHLOROMETHANE	74-87-3	0.50 ug/L	<0.50
2-CHLOROTOLUENE	95-49-8	0.50 ug/L	<0.50
4-CHLOROTOLUENE	106-43-4	0.50 ug/L	<0.50
CHLORODIBROMOMETHANE	124-48-1	0.50 ug/L	<0.50
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.50 ug/L	<0.50
1,2-DIBROMOETHANE	106-93-4	0.50 ug/L	<0.50
DIBROMOMETHANE	74-95-3	0.50 ug/L	<0.50
1,2-DICHLOROBENZENE	95-50-1	0.50 ug/L	<0.50
1,3-DICHLOROBENZENE	541-73-1	0.50 ug/L	<0.50
1,4-DICHLOROBENZENE	106-46-7	0.50 ug/L	<0.50
DICHLORODIFLUOROMETHANE	75-71-8	0.50 ug/L	< 0.50
1,1-DICHLOROETHANE	75-34-3	0.50 ug/L	<0.50
1,2-DICHLOROETHANE	107-06-2	0.50 ug/L	<0.50
1,1-DICHLOROETHENE	75-35-4	0.50 ug/L	<0.50
cis-1,2-DICHLOROETHENE	156-59-2	0.50 ug/L	<0.50
trans-1,2-DICHLOROETHENE	156-60-5	0.50 ug/L	<0.50
1,2-DICHLOROPROPANE	78-87-5	0.50 ug/L	<0.50
1,3-DICHLOROPROPANE	142-28-9	0.50 ug/L	<0.50
2,2-DICHLOROPROPANE	594-20-7	0.50 ug/L	<0.50
1,1-DICHLOROPROPENE	563-58-6	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)
Date received: 5/23/06	Laboratory ID: 1109721
Date extracted: 5/26/06	Matrix: Liquid
Date analyzed: 5/26/06	ELAP #: 11693

Parameter	CAS No.	MDL	Results ug/L
cis[Z]-1,3-DICHLOROPROPENE	10061-01-5	0.50 ug/L	<0.50
Trans[E]-1,3-DICHLOROPROPENE	10061-02-6	0.50 ug/L	<0.50
ETHYLBENZENE	100-41-4	0.50 ug/L	<0.50
HEXACHLOROBUTADIENE	87-68-3	0.50 ug/L	<0.50
2-HEXANONE	591-78-6	0.50 ug/L	<0.50
ISOPROPYLBENZENE	98-82-8	0.50 ug/L	<0.50
p-ISOPROPYLTOLUENE	99-87-6	0.50 ug/L	<0.50
METHYLENE CHLORIDE	75-09-2	0.50 ug/L	< 0.50
METHYL ISOBUTYL KETONE (MIBK)	108-10-1	0.50 ug/L	<0.50
MTBE	1634-04-4	0.50 ug/L	<0.50
NAPHTHALENE	91-20-3	0.50 ug/L	<0.50
n-PROPYLBENZENE	103-65-1	0.50 ug/L	<0.50
STYRENE	100-42-5	0.50 ug/L	<0.50
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.50 ug/L	<0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.50 ug/L	<0.50
TETRACHLOROETHENE	127-18-4	0.50 ug/L	<0.50
TOLUENE	108-88-3	0.50 ug/L	<0.50
1,2,3-TRICHLOROBENZENE	87-61-6	0.50 ug/L	<0.50
1,2,4-TRICHLOROBENZENE	120-82-1	0.50 ug/L	<0.50
1,1,1-TRICHLOROETHANE	71-55-6	0.50 ug/L	<0.50
1,1,2-TRICHLOROETHANE	79-00-5	0.50 ug/L	<0.50
TRICHLOROETHENE	79-01-6	0.50 ug/L	<0.50
TRICHLOROFLUOROMETHANE	75-69-4	0.50 ug/L	<0.50
1,2,3-TRICHLOROPROPANE	96-18-4	0.50 ug/L	<0.50
1,2,4-TRIMETHYLBENZENE	95-63-6	0.50 ug/L	<0.50
1,3,5-TRIMETHYLBENZENE	108-67-8	0.50 ug/L	<0.50
VINYL CHLORIDE	75-01-4	0.50 ug/L	<0.50
p & m-XYLENE	1330-20-7	1.00 ug/L	<1.00
O-XYLENE	1330-20-7	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

Michael Verald

97 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)
Date received: 5/23/06	Laboratory ID: 1109721
Date extracted: 6/2/06	Matrix: Liquid
Date analyzed: 6/2/06	ELAP #: 11693

EPA METHOD 314.0

PARAMETER	MDL	RESULTS ug/L
Perchlorate	4.0 ug/L	<4.0

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)
Date received: 5/23/06	Laboratory ID: 1109721
Date extracted: 5/24/06	Matrix: Liquid
Date analyzed: 5/24/06	ELAP #: 11693

PARAMETER PARAMETER	CAS No.	MDL	RESULTS ug/L
HEXACHLOROBENZENE	118-74-1	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)PHTALATE	117-81-7	1.0 ug/L	3.8
BENZO-a-PYRENE	50-32-8	0.2 ug/L	<0.2
PENTACHLOROPHENOL	87-86-5	0.8 ug/L	<0.8
BUTACHLOR	23184-66-9	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)ADIPATE	103-23-1	0.2 ug/L	<0.2
HEXACHLOROCYCLOPENTADIENE	77-47-4	0.2 ug/L	<0.2

MDL = Minimum Detection Limit.

99 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)
Date received: 5/23/06	Laboratory ID: 1109721
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 508/551

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALACHLOR	15972-60-8	0.1 ug/L	<0.1
ATRAZINE	1912-24-9	2 ug/L	<2
METOLACHLOR	51218-45-2	5.0 ug/L	<5.0
METRIBUXIN	21087-64-9	5.0 ug/L	<5.0
PROPACHLOR	1918-16-7	5.0 ug/L	<5.0
SIMAZINE	122-34-9	0.2 ug/L	<0.2
1,2-Dibromoethane	106-93-4	0.01 ug/L	< 0.01
1,2-Dibromo-3-Chlorpropane	96-12-8	0.1 ug/L	<0.1

MDL = Minimum Detection Limit.

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)		
Date received: 5/23/06	Laboratory ID: 1109721		
Date extracted: 5/27/06	Matrix: Liquid		
Date analyzed: 5/27/06	ELAP #: 11693		

EPA METHOD 608

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALDRIN	309-00-2	0.01 ug/L	<0.01
α - BHC	319-84-6	0.01 ug/L	<0.01
β - BHC	319-85-7	0.01 ug/L	<0.01
<u>δ -</u> BHC	319-86-8	0.01 ug/L	<0.01
γ - BHC (Lindane)	58-89-9	0.02 ug/L	<0.02
CHLORDANE	12789-03-6	0.02 ug/L	<0.02
4,4'-DDD	72-54-8	0.01 ug/L	<0.01
4,4'-DDE	72-55-9	0.01 ug/L	<0.01
4,4'-DDT	50-29-3	0.05 ug/L	<0.05
DIELDRIN	60-57-1	0.01 ug/L	<0.01
ENDOSULFAN I	959-98-8	0.01 ug/L	<0.01
ENDOSULFAN II	33212-65-9	0.01 ug/L	<0.01
ENDOSULFAN SULFATE	1031-07-8	0.02 ug/L	<0.02
ENDRIN	72-20-8	0.01 ug/L	<0.01
ENDRIN ALDEHYDE	7421-93-4	0.01 ug/L	<0.01
ENDRIN KETONE	53494-70-5	0.02 ug/L	<0.02
HEPTACHLOR	76-44-8	0.01 ug/L	<0.01
HEPTACHLOR EPOXIDE	1024-57-3	0.01 ug/L	<0.01
4,4'-METHOXYCHLOR	72-43-5	0.01 ug/L	<0.01
TOXAPHENE	8001-35-2	20 ug/L	<20
AROCLOR-1016	12674-11-2	20 ug/L	<20
AROCLOR-1221	1104-28-2	20 ug/L	<20
AROCLOR-1232	11141-16-5	20 ug/L	<20
AROCLOR-1242	53469-21-9	20 ug/L	<20
AROCLOR-1248	12672-29-6	20 ug/L	<20
AROCLOR-1254	1109769-1	20 ug/L	<20
AROCLOR-1260	11096-82-5	20 ug/L	<20

MDL = Minimum Detection Limit.

101 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)
Date received: 5/23/06	Laboratory ID: 1109721
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 515

PARAMETER	CAS No.	MDL	RESULTS ug/L
Dalapon	75990	20 ug/L	<20
Dicamba	1918009	1.0 ug/L	<1.0
2-,4-D	94757	5.0 ug/L	<5.0
2,4,5-TP (Silvex)	93721	5.0 ug/L	<5.0
Dinoseb	88857	0.5 ug/L	< 0.05
Picloram	1918021	5.0 ug/L	<5.0

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)
Date received: 5/23/06	Laboratory ID: 1109721
Date extracted: 5/26, 5/31, 6/1, 6/5/06	Matrix: Liquid
Date analyzed: 5/26, 5/31, 6/1, 6/5/06	ELAP #: 11693

TOTAL METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/L
SILVER, Ag	0.05 mg/L	<0.05
ALUMINUM, AI	0.05 mg/L	37.6
ARSENIC, As	0.05 mg/L	<0.05
BARIUM, Ba	1.00 mg/L	<1.00
BERYLLIUM, Be	0.05 mg/L	<0.05
CALCIUM, Ca	0.05 mg/L	14.8
CADMIUM, Cd	0.05 mg/L	<0.05
COBALT, Co	0.05 mg/L	0.09
CHROMIUM, Cr	0.05 mg/L	0.38
COPPER, Cu	0.05 mg/L	0.31
IRON, Fe	0.05 mg/L	106
MERCURY, Hg	0.002 mg/L	<0.002
POTASSIUM, K	0.05 mg/L	8.98
MAGNESIUM, Mg	0.05 mg/L	9.11
MANGANESE, Mn	0.05 mg/L	12.0
MOLYBDENUM, Mo	0.05 mg/L	<0.05
SODIUM, Na	0.05 mg/L	15.6
NICKEL, Ni	0.05 mg/L	0.20
LEAD, Pb	0.005 mg/L	0.058
ANTIMONY, Sb	0.05 mg/L	<0.05
SELENIUM, Se	0.05 mg/L	<0.05
THALIUM, TI	0.05 mg/L	<0.05
VANADIUM, V	0.05 mg/L	0.08
ZINC, Zn	0.05 mg/L	1.18

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verail

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-3)
Date received: 5/23/06	Laboratory ID: 1109721
Date analyzed: See Below	Matrix: Liquid

ANALYTICAL RESULTS

PARAMETER	METHOD	DATE ANALYZED	RESULTS
Chloride	EPA 300.0	5/24/06	24 mg/L
Sulfate (as SO4)	EPA 300.0	5/24/06	56 mg/L
Ammonia (as N)	SM 18 4500-NH3 C	5/26/06	<1 mg/L
Nitrate (as N)	EPA 300.0	5/24/06	7.0 mg/L
Nitrite (as N)	EPA 300.0	5/24/06	<0.5 mg/L
Bromide	EPA 300.0	5/24/06	<1.0 mg/L
Orthophosphate (as P)	EPA 300.0	5/24/06	<1.0 mg/L
Fluoride, Total	EPA 300.0	5/24/06	<1.0 mg/L

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
·	(GW-4)
Date received: 5/23/06	Laboratory ID: 1109686
Date extracted: 5/23/06	Matrix: Liquid
Date analyzed: 5/23/06	ELAP #: 11693

Parameter	CAS No.	MDL	Results ug/L
ACETONE	62-64-1	5.00 ug/L	<5.00
BENZENE	71-43-2	0.50 ug/L	<0.50
BROMOBENZENE	108-86-1	0.50 ug/L	<0.50
BROMOCHLOROMETHANE	74-97-5	0.50 ug/L	<0.50
BROMODICHLOROMETHANE	75-27-4	0.50 ug/L	<0.50
BROMOFORM	75-25-2	0.50 ug/L	<0.50
BROMOMETHANE	74-83-9	0.50 ug/L	<0.50
2-BUTANONE (MEK)	78-93-3	1.00 ug/L	<1.00
n-BUTYLBENZENE	104-51-8	0.50 ug/L	<0.50
sec-BUTYLBENZENE	135-98-8	0.50 ug/L	<0.50
tert-BUTYLBENZENE	98-06-6	0.50 ug/L	<0.50
CARBON DISULFIDE	75-15-0	0.50 ug/L	<0.50
CARBON TETRACHLORIDE	56-23-5	0.50 ug/L	<0.50
CHLOROBENZENE	108-90-7	0.50 ug/L	<0.50
CHLOROETHANE	75-00-3	0.50 ug/L	<0.50
CHLOROFORM	67-66-3	0.50 ug/L	<0.50
CHLOROMETHANE	74-87 - 3	0.50 ug/L	<0.50
2-CHLOROTOLUENE	95-49-8	0.50 ug/L	<0.50
4-CHLOROTOLUENE	106-43-4	0.50 ug/L	<0.50
CHLORODIBROMOMETHANE	124-48-1	0.50 ug/L	<0.50
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.50 ug/L	<0.50
1,2-DIBROMOETHANE	106-93-4	0.50 ug/L	<0.50
DIBROMOMETHANE	74-95-3	0.50 ug/L	<0.50
1,2-DICHLOROBENZENE	95-50-1	0.50 ug/L	<0.50
1,3-DICHLOROBENZENE	541-73-1	0.50 ug/L	<0.50
1,4-DICHLOROBENZENE	106-46-7	0.50 ug/L	<0.50
DICHLORODIFLUOROMETHANE	75-71 - 8	0.50 ug/L	<0.50
1,1-DICHLOROETHANE	75-34-3	0.50 ug/L	<0.50
1,2-DICHLOROETHANE	107-06-2	0.50 ug/L	<0.50
1,1-DICHLOROETHENE	75-35-4	0.50 ug/L	<0.50
cis-1,2-DICHLOROETHENE	156-59-2	0.50 ug/L	<0.50
trans-1,2-DICHLOROETHENE	156-60-5	0.50 ug/L	<0.50
1,2-DICHLOROPROPANE	78-87-5	0.50 ug/L	<0.50
1,3-DICHLOROPROPANE	142-28-9	0.50 ug/L	<0.50
2,2-DICHLOROPROPANE	594-20-7	0.50 ug/L	<0.50
1,1-DICHLOROPROPENE	563-58-6	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-4)
Date received: 5/23/06	Laboratory ID: 1109686
Date extracted: 5/23/06	Matrix: Liquid
Date analyzed: 5/23/06	ELAP #: 11693

CAS No.	MDL	Results ug/L
10061-01-5	0.50 ug/L	<0.50
10061-02-6		<0.50
100-41-4		<0.50
87-68-3		<0.50
591-78-6		< 0.50
98-82-8		<0.50
99-87-6		< 0.50
75-09-2		<0.50
108-10-1		< 0.50
1634-04-4	0.50 ug/L	< 0.50
91-20-3	0.50 ug/L	<0.50
103-65-1		<0.50
100-42-5		<0.50
630-20-6		< 0.50
79-34-5	0.50 ug/L	<0.50
127-18-4	0.50 ug/L	<0.50
108-88-3	0.50 ug/L	<0.50
87-61-6	0.50 ug/L	<0.50
120-82-1		<0.50
71-55-6	0.50 ug/L	<0.50
79-00-5	0.50 ug/L	<0.50
79-01-6	0.50 ug/L	<0.50
75-69-4	0.50 ug/L	<0.50
96-18-4		<0.50
95-63-6		<0.50
108-67-8		<0.50
75-01-4		<0.50
1330-20-7	1.00 ug/L	<1.00
1330-20-7	0.50 ug/L	<0.50
	10061-01-5 10061-02-6 100-41-4 87-68-3 591-78-6 98-82-8 99-87-6 75-09-2 108-10-1 1634-04-4 91-20-3 103-65-1 100-42-5 630-20-6 79-34-5 127-18-4 108-88-3 87-61-6 120-82-1 71-55-6 79-00-5 79-01-6 75-69-4 96-18-4 95-63-6 108-67-8 75-01-4 1330-20-7	10061-01-5 0.50 ug/L 10061-02-6 0.50 ug/L 100-41-4 0.50 ug/L 87-68-3 0.50 ug/L 591-78-6 0.50 ug/L 98-82-8 0.50 ug/L 99-87-6 0.50 ug/L 75-09-2 0.50 ug/L 108-10-1 0.50 ug/L 103-65-1 0.50 ug/L 100-42-5 0.50 ug/L 100-42-5 0.50 ug/L 127-18-4 0.50 ug/L 108-88-3 0.50 ug/L 120-82-1 0.50 ug/L 79-00-5 0.50 ug/L 79-01-6 0.50 ug/L 79-01-6 0.50 ug/L 75-69-4 0.50 ug/L 95-63-6 0.50 ug/L 108-67-8 0.50 ug/L 108-67-8

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-4)
Date received: 5/23/06	Laboratory ID: 1109686
Date extracted: 6/6/06	Matrix: Liquid
Date analyzed: 6/6/06	ELAP #: 11693

EPA METHOD 314.0

PARAMETER	MDL	RESULTS ug/L
Perchlorate	4.0 ug/L	<4.0

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-4)
Date received: 5/23/06	Laboratory ID: 1109686
Date extracted: 5/24/06	Matrix: Liquid
Date analyzed: 5/24/06	ELAP #: 11693

EPA METHOD 525.2

PARAMETER	CAS No.	MDL	RESULTS ug/L
HEXACHLOROBENZENE	118-74-1	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)PHTALATE	117-81-7	1.0 ug/L	<1.0
BENZO-a-PYRENE	50-32-8	0.2 ug/L	<0.2
PENTACHLOROPHENOL	87-86-5	0.8 ug/L	<0.8
BUTACHLOR	23184-66-9	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)ADIPATE	103-23-1	0.2 ug/L	<0.2
HEXACHLOROCYCLOPENTADIENE	77-47-4	0.2 ug/L	<0.2

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-4)
Date received: 5/23/06	Laboratory ID: 1109686
Date extracted: 5/31/06	Matrix: Liquid
Date analyzed: 5/31/06	ELAP #: 11693

EPA METHOD 508/551

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALACHLOR	15972-60-8	0.1 ug/L	<0.1
ATRAZINE	1912-24-9	2 ug/L	<2
METOLACHLOR	51218-45-2	5.0 ug/L	<5.0
METRIBUXIN	21087-64-9	5.0 ug/L	<5.0
PROPACHLOR	1918-16-7	5.0 ug/L	<5.0
SIMAZINE	122-34-9	0.2 ug/L	<0.2
1,2-Dibromoethane	106-93-4	0.01 ug/L	< 0.01
1,2-Dibromo-3-Chlorpropane	96-12-8	0.1 ug/L	<0.1

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-4)	
Date received: 5/23/06	Laboratory ID: 1109686	
Date extracted: 5/27/06	Matrix: Liquid	
Date analyzed: 5/27/06	ELAP #: 11693	

EPA METHOD 608

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALDRIN	309-00-2	0.01 ug/L	<0.01
<u>α - BHC</u>	319-84-6	0.01 ug/L	<0.01
β - BHC	319-85-7	0.01 ug/L	<0.01
δ - BHC	319-86-8	0.01 ug/L	<0.01
γ - BHC (Lindane)	58-89-9	0.02 ug/L	<0.02
CHLORDANE	12789-03-6	0.02 ug/L	<0.02
4,4'-DDD	72-54-8	0.01 ug/L	<0.01
4,4'-DDE	72-55-9	0.01 ug/L	<0.01
4,4'-DDT	50-29-3	0.05 ug/L	<0.05
DIELDRIN	60-57-1	0.01 ug/L	<0.01
ENDOSULFAN I	959-98-8	0.01 ug/L	<0.01
ENDOSULFAN II	33212-65-9	0.01 ug/L	<0.01
ENDOSULFAN SULFATE	1031-07-8	0.02 ug/L	<0.02
ENDRIN	72-20-8	0.01 ug/L	<0.01
ENDRIN ALDEHYDE	7421-93-4	0.01 ug/L	<0.01
ENDRIN KETONE	53494-70-5	0.02 ug/L	<0.02
HEPTACHLOR	76-44-8	0.01 ug/L	<0.01
HEPTACHLOR EPOXIDE	1024-57-3	0.01 ug/L	<0.01
4,4'-METHOXYCHLOR	72-43-5	0.01 ug/L	<0.01
TOXAPHENE	8001-35-2	20 ug/L	<20
AROCLOR-1016	12674-11-2	20 ug/L	<20
AROCLOR-1221	1104-28-2	20 ug/L	<20
AROCLOR-1232	11141-16-5	20 ug/L	<20
AROCLOR-1242	53469-21-9	20 ug/L	<20
AROCLOR-1248	12672-29-6	20 ug/L	<20
AROCLOR-1254	1109769-1	20 ug/L	<20
AROCLOR-1260	11096-82-5	20 ug/L	<20

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-4)
Date received: 5/23/06	Laboratory ID: 1109686
Date extracted: 5/31/06	Matrix: Liquid
Date analyzed: 5/31/06	ELAP #: 11693

EPA METHOD 515

PARAMETER	CAS No.	MDL	RESULTS ug/L
Dalapon	75990	20 ug/L	<20
Dicamba	1918009	1.0 ug/L	<1.0
2-,4-D	94757	5.0 ug/L	<5.0
2,4,5-TP (Silvex)	93721	5.0 ug/L	<5.0
Dinoseb	88857	0.5 ug/L	< 0.05
Picloram	1918021	5.0 ug/L	<5.0

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-4)
Date received: 5/23/06	Laboratory ID: 1109686
Date extracted: 5/24, 5/26, 6/1, 6/5/06	Matrix: Liquid
Date analyzed: 5/24, 5/26, 6/1, 6/5/06	ELAP #: 11693

TOTAL METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/L
SILVER, Ag	0.05 mg/L	<0.05
ALUMINUM, AI	0.05 mg/L	17.0
ARSENIC, As	0.05 mg/L	< 0.05
BARIUM, Ba	1.00 mg/L	<1.00
BERYLLIUM, Be	0.05 mg/L	<0.05
CALCIUM, Ca	0.05 mg/L	10.5
CADMIUM, Cd	0.05 mg/L	<0.05
COBALT, Co	0.05 mg/L	<0.05
CHROMIUM, Cr	0.05 mg/L	0.33
COPPER, Cu	0.05 mg/L	0.11
IRON, Fe	0.05 mg/L	65.3
MERCURY, Hg	0.002 mg/L	<0.002
POTASSIUM, K	0.05 mg/L	5.99
MAGNESIUM, Mg	0.05 mg/L	6.65
MANGANESE, Mn	0.05 mg/L	2.52
MOLYBDENUM, Mo	0.05 mg/L	0.09
SODIUM, Na	0.05 mg/L	10.5
NICKEL, Ni	0.05 mg/L	0.14
LEAD, Pb	0.005 mg/L	0.022
ANTIMONY, Sb	0.05 mg/L	<0.05
SELENIUM, Se	0.05 mg/L	<0.05
THALIUM, TI	0.05 mg/L	<0.05
VANADIUM, V	0.05 mg/L	<0.05
ZINC, Zn	0.05 mg/L	1.13

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	(GW-4) Laboratory ID: 1109686
Date analyzed: See Below	Matrix: Liquid

ANALYTICAL RESULTS

PARAMETER	METHOD	DATE ANALYZED	RESULTS
Chloride	EPA 300.0	5/24/06	17 mg/L
Sulfate (as SO4)	EPA 300.0	5/24/06	67 mg/L
Ammonia (as N)	SM 18 4500-NH3 C	5/26/06	<1.0 mg/L
Nitrate (as N)	EPA 300.0	5/24/06	2.6 mg/L
Nitrite (as N)	EPA 300.0	5/24/06	<0.5 mg/L
Bromide	EPA 300.0	5/24/06	<1.0 mg/L
Orthophosphate (as P)	EPA 300.0	5/24/06	<1.0 mg/L
Fluoride, Total	EPA 300.0	5/24/06	<1.0 mg/L

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GW-5)
Date received: 5/23/06	Laboratory ID: 1109704
Date extracted: 5/26/06	Matrix: Liquid
Date analyzed: 5/26/06	ELAP #: 11693

RETONE 62-64-1 5.00 ug/L <5.00	Parameter Parameter	CAS No.	MDL	Results ug/L
BROMOBENZENE 108-86-1 0.50 ug/L <0.50	ACETONE	62-64-1	5.00 ug/L	
BROMOCHLOROMETHANE 74-97-5 0.50 ug/L <0.50			0.50 ug/L	< 0.50
BROMOCHLOROMETHANE 74-97-5 0.50 ug/L <0.50			0.50 ug/L	< 0.50
BROMOFORM 75-27-4 0.50 ug/L <0.50 BROMOFORM 75-25-2 0.50 ug/L <0.50		74-97-5	0.50 ug/L	
BROMOFORM 75-25-2 0.50 ug/L <0.50			0.50 ug/L	
BROMOMETHANE 74-83-9 0.50 ug/L <0.50		75-25-2		
2-BUTANONE (MEK) 78-93-3 1.00 ug/L <1.00		74-83-9		
n-BUTYLBENZENE 104-51-8 0.50 ug/L <0.50 sec-BUTYLBENZENE 135-98-8 0.50 ug/L <0.50 tert-BUTYLBENZENE 98-06-6 0.50 ug/L <0.50 CARBON DISULFIDE 75-15-0 0.50 ug/L <0.50 CARBON TETRACHLORIDE 56-23-5 0.50 ug/L <0.50 CHLOROBENZENE 108-90-7 0.50 ug/L <0.50 CHLOROBENZENE 108-90-7 0.50 ug/L <0.50 CHLOROFORM 67-66-3 0.50 ug/L <0.50 CHLOROFORM 67-66-3 0.50 ug/L <0.50 CHLOROMETHANE 74-87-3 0.50 ug/L <0.50 CHLOROTOLUENE 95-49-8 0.50 ug/L <0.50 4-CHLOROTOLUENE 106-43-4 0.50 ug/L <0.50 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 0.50 ug/L <0.50 1,2-DIBROMOETHANE 106-93-4 0.50 ug/L <0.50 1,2-DICHLOROBENZENE 95-50-1 0.50 ug/L <0.50 1,3-DICHLOROBENZENE 95-50-1 0.50 ug/L <0.50 1,4-DICHLOROBENZENE 541-73-1 0.50 ug/L <0.50 1,1-DICHLOROBETHANE 106-46-7 0.50 ug/L <0.50 1,1-DICHLOROBETHANE 75-34-3 0.50 ug/L <0.50 1,1-DICHLOROBETHANE 107-06-2 0.50 ug/L <0.50 1,1-DICHLOROETHANE 156-60-5 0.50 ug/L <0.50 1,1-DICHLOROETHENE 75-35-4 0.50 ug/L <0.50 trans-1,2-DICHLOROETHENE 156-60-5 0.50 ug/L <0.50 1,3-DICHLOROPROPANE 78-87-5 0.50 ug/L <0.50 trans-1,2-DICHLOROPROPANE 78-87-5 0.50 ug/L <0.50 1,3-DICHLOROPROPANE 594-20-7 0.50 ug/L <0.50 1,1-DICHLOROPROPANE 594-20-7 0.50 ug/L <0.50 1,1-DICHLOROPRO		78-93-3	1.00 ug/L	
Sec-BUTYLBENZENE 135-98-8 0.50 ug/L <0.50 Lett-BUTYLBENZENE 98-06-6 0.50 ug/L <0.50		104-51-8		
tert-BUTYLBENZENE 98-06-6 0.50 ug/L <0.50 CARBON DISULFIDE 75-15-0 0.50 ug/L <0.50		135-98-8		
CARBON DISULFIDE 75-15-0 0.50 ug/L <0.50 CARBON TETRACHLORIDE 56-23-5 0.50 ug/L <0.50		98-06-6		
CARBON TETRACHLORIDE 56-23-5 0.50 ug/L <0.50 CHLOROBENZENE 108-90-7 0.50 ug/L <0.50		75-15-0		
CHLOROBENZENE 108-90-7 0.50 ug/L <0.50 CHLOROFORM 67-66-3 0.50 ug/L <0.50		56-23-5		
CHLOROFORM 75-00-3 0.50 ug/L <0.50 CHLOROFORM 67-66-3 0.50 ug/L <0.50		108-90-7	0.50 ug/L	
CHLOROFORM 67-66-3 0.50 ug/L <0.50 CHLOROMETHANE 74-87-3 0.50 ug/L <0.50				
CHLOROMETHANE 74-87-3 0.50 ug/L <0.50 2-CHLOROTOLUENE 95-49-8 0.50 ug/L <0.50		67-66-3		
2-CHLOROTOLUENE 95-49-8 0.50 ug/L <0.50 4-CHLOROTOLUENE 106-43-4 0.50 ug/L <0.50		74-87-3		
4-CHLOROTOLUENE 106-43-4 0.50 ug/L <0.50 CHLORODIBROMOMETHANE 124-48-1 0.50 ug/L <0.50		95-49-8		
CHLORODIBROMOMETHANE 124-48-1 0.50 ug/L <0.50 1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 0.50 ug/L <0.50		106-43-4		
1,2-DIBROMO-3-CHLOROPROPANE 96-12-8 0.50 ug/L <0.50	CHLORODIBROMOMETHANE	124-48-1		
1,2-DIBROMOETHANE 106-93-4 0.50 ug/L <0.50	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8		
DIBROMOMETHANE 74-95-3 0.50 ug/L <0.50 1,2-DICHLOROBENZENE 95-50-1 0.50 ug/L <0.50 1,3-DICHLOROBENZENE 541-73-1 0.50 ug/L <0.50 1,4-DICHLOROBENZENE 106-46-7 0.50 ug/L <0.50 DICHLORODIFLUOROMETHANE 75-71-8 0.50 ug/L <0.50 1,1-DICHLOROETHANE 75-34-3 0.50 ug/L <0.50 1,2-DICHLOROETHANE 107-06-2 0.50 ug/L <0.50 1,1-DICHLOROETHENE 75-35-4 0.50 ug/L <0.50 cis-1,2-DICHLOROETHENE 156-59-2 0.50 ug/L <0.50 trans-1,2-DICHLOROETHENE 156-60-5 0.50 ug/L <0.50 1,2-DICHLOROPROPANE 78-87-5 0.50 ug/L <0.50 1,3-DICHLOROPROPANE 78-87-5 0.50 ug/L <0.50 2,2-DICHLOROPROPANE 594-20-7 0.50 ug/L <0.50 1,1-DICHLOROPROPANE 594-20-7 0.50 ug/L <0.50 1,1-DICHLOROPROPENE 563-58-6 0.50 ug/L <0.50	1,2-DIBROMOETHANE	106-93-4		
1,2-DICHLOROBENZENE 95-50-1 0.50 ug/L <0.50		74-95-3		
1,3-DICHLOROBENZENE 541-73-1 0.50 ug/L <0.50		95-50-1		
1,4-DICHLOROBENZENE 106-46-7 0.50 ug/L <0.50		541-73-1		
DICHLORODIFLUOROMETHANE 75-71-8 0.50 ug/L <0.50 1,1-DICHLOROETHANE 75-34-3 0.50 ug/L <0.50		106-46-7		
1,1-DICHLOROETHANE 75-34-3 0.50 ug/L <0.50				
1,2-DICHLOROETHANE 107-06-2 0.50 ug/L <0.50				
1,1-DICHLOROETHENE 75-35-4 0.50 ug/L <0.50				
cis-1,2-DICHLOROETHENE 156-59-2 0.50 ug/L <0.50 trans-1,2-DICHLOROETHENE 156-60-5 0.50 ug/L <0.50		75-35-4		
trans-1,2-DICHLOROETHENE 156-60-5 0.50 ug/L <0.50 1,2-DICHLOROPROPANE 78-87-5 0.50 ug/L <0.50		156-59-2		
1,2-DICHLOROPROPANE 78-87-5 0.50 ug/L <0.50				
1,3-DICHLOROPROPANE 142-28-9 0.50 ug/L <0.50 2,2-DICHLOROPROPANE 594-20-7 0.50 ug/L <0.50 1,1-DICHLOROPROPENE 563-58-6 0.50 ug/L <0.50		78-87-5		
2,2-DICHLOROPROPANE 594-20-7 0.50 ug/L <0.50 1,1-DICHLOROPROPENE 563-58-6 0.50 ug/L <0.50	1,3-DICHLOROPROPANE			
1,1-DICHLOROPROPENE 563-58-6 0.50 µg/l <0.50		594-20-7		
	1,1-DICHLOROPROPENE 1DL = Minimum Detection Limit	563-58-6	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
Date received: 5/23/06	(GW-5) Laboratory ID: 1109704
Date extracted: 5/26/06	Matrix: Liquid
Date analyzed: 5/26/06	ELAP #: 11693

Parameter	CAS No.	MDL	Results ug/L
cis[Z]-1,3-DICHLOROPROPENE	10061-01-5	0.50 ug/L	<0.50
Trans[E]-1,3-DICHLOROPROPENE	10061-02-6	0.50 ug/L	<0.50
ETHYLBENZENE	100-41-4	0.50 ug/L	<0.50
HEXACHLOROBUTADIENE	87-68-3	0.50 ug/L	<0.50
2-HEXANONE	591-78-6	0.50 ug/L	<0.50
ISOPROPYLBENZENE	98-82-8	0.50 ug/L	<0.50
p-ISOPROPYLTOLUENE	99-87-6	0.50 ug/L	<0.50
METHYLENE CHLORIDE	75-09-2	0.50 ug/L	0.52
METHYL ISOBUTYL KETONE (MIBK)	108-10-1	0.50 ug/L	< 0.50
MTBE	1634-04-4	0.50 ug/L	<0.50
NAPHTHALENE	91-20-3	0.50 ug/L	<0.50
n-PROPYLBENZENE	103-65-1	0.50 ug/L	<0.50
STYRENE	100-42-5	0.50 ug/L	<0.50
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.50 ug/L	<0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.50 ug/L	<0.50
TETRACHLOROETHENE	127-18-4	0.50 ug/L	<0.50
TOLUENE	108-88-3	0.50 ug/L	<0.50
1,2,3-TRICHLOROBENZENE	87-61-6	0.50 ug/L	<0.50
1,2,4-TRICHLOROBENZENE	120-82-1	0.50 ug/L	<0.50
1,1,1-TRICHLOROETHANE	71-55-6	0.50 ug/L	0.74
1,1,2-TRICHLOROETHANE	79-00-5	0.50 ug/L	<0.50
TRICHLOROETHENE	79-01-6	0.50 ug/L	<0.50
TRICHLOROFLUOROMETHANE	75-69-4	0.50 ug/L	<0.50
1,2,3-TRICHLOROPROPANE	96-18-4	0.50 ug/L	<0.50
1,2,4-TRIMETHYLBENZENE	95-63-6	0.50 ug/L	<0.50
1,3,5-TRIMETHYLBENZENE	108-67-8	0.50 ug/L	<0.50
VINYL CHLORIDE	75-01-4	0.50 ug/L	<0.50
p & m-XYLENE	1330-20-7	1.00 ug/L	<1.00
O-XYLENE	1330-20-7	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

Mishor Wald

46 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GW-5)
Date received: 5/23/06	Laboratory ID: 1109704
Date extracted: 6/2/06	Matrix: Liquid
Date analyzed: 6/2/06	ELAP #: 11693

EPA METHOD 314.0

PARAMETER	MDL	RESULTS ug/L
Perchlorate	4.0 ug/L	<4.0

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verald

47 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-5)
Date received: 5/23/06	Laboratory ID: 1109704
Date extracted: 5/24/06	Matrix: Liquid
Date analyzed: 5/24/06	ELAP #: 11693

EPA METHOD 525.2

PARAMETER	CAS No.	MDL	RESULTS ug/L
HEXACHLOROBENZENE	118-74-1	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)PHTALATE	117-81-7	1.0 ug/L	<1.0
BENZO-a-PYRENE	50-32-8	0.2 ug/L	<0.2
PENTACHLOROPHENOL	87-86-5	0.8 ug/L	<0.8
BUTACHLOR	23184-66-9	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)ADIPATE	103-23-1	0.2 ug/L	<0.2
HEXACHLOROCYCLOPENTADIENE	77-47-4	0.2 ug/L	<0.2

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verald

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-5)
Date received: 5/23/06	Laboratory ID: 1109704
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 508/551

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALACHLOR	15972-60-8	0.1 ug/L	<0.1
ATRAZINE	1912-24-9	2 ug/L	<2
METOLACHLOR	51218-45-2	5.0 ug/L	<5.0
METRIBUXIN	21087-64-9	5.0 ug/L	<5.0
PROPACHLOR	1918-16-7	5.0 ug/L	<5.0
SIMAZINE	122-34-9	0.2 ug/L	<0.2
1,2-Dibromoethane	106-93-4	0.01 ug/L	<0.01
1,2-Dibromo-3-Chlorpropane	96-12-8	0.1 ug/L	<0.1

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-5)
Date received: 5/23/06	Laboratory ID: 1109704
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 608

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALDRIN	309-00-2	0.01 ug/L	<0.01
α - BHC	319-84-6	0.01 ug/L	<0.01
β - BHC	319-85-7	0.01 ug/L	<0.01
δ - BHC	319-86-8	0.01 ug/L	<0.01
γ - BHC (Lindane)	58-89-9	0.02 ug/L	<0.01
CHLORDANE	12789-03-6	0.02 ug/L	
4,4'-DDD	72-54-8	0.02 ug/L	<0.02
4,4'-DDE	72-55-9	0.01 ug/L	<0.01
4,4'-DDT	50-29-3	0.05 ug/L	<0.01
DIELDRIN	60-57-1	0.03 ug/L	<0.05
ENDOSULFAN I	959-98-8	0.01 ug/L	<0.01
ENDOSULFAN II	33212-65-9	0.01 ug/L	<0.01
ENDOSULFAN SULFATE	1031-07-8	0.02 ug/L	<0.01
ENDRIN	72-20-8	0.02 dg/L 0.01 ug/L	<0.02
ENDRIN ALDEHYDE	7421-93-4	0.01 ug/L	<0.01 <0.01
ENDRIN KETONE	53494-70-5	0.02 ug/L	
HEPTACHLOR	76-44-8	0.02 ug/L	<0.02
HEPTACHLOR EPOXIDE	1024-57-3	0.01 ug/L	<0.01
4,4'-METHOXYCHLOR	72-43-5	0.01 ug/L	<0.01 <0.01
TOXAPHENE	8001-35-2	20 ug/L	<20
AROCLOR-1016	12674-11-2	20 ug/L	<20
AROCLOR-1221	1104-28-2	20 ug/L	
AROCLOR-1232	11141-16-5	20 ug/L	<20
AROCLOR-1242	53469-21-9	20 ug/L	<20
AROCLOR-1248	12672-29-6	20 ug/L	<20
AROCLOR-1254	1109769-1	20 ug/L	<20
AROCLOR-1260	11096-82-5	20 ug/L	<20
IDL = Minimum Detection I		1 20 ug/L	<20

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-5)
Date received: 5/23/06	Laboratory ID: 1109704
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 515

PARAMETER	CAS No.	MDL	RESULTS ug/L
Dalapon	75990	20 ug/L	<20
Dicamba	1918009	1.0 ug/L	<1.0
2-,4-D	94757	5.0 ug/L	<5.0
2,4,5-TP (Silvex)	93721	5.0 ug/L	<5.0
Dinoseb	88857	0.5 ug/L	< 0.05
Picloram	1918021	5.0 ug/L	<5.0

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-5)
Date received: 5/23/06	Laboratory ID: 1109704
Date extracted: 5/26, 6/1, 6/5/06	Matrix: Liquid
Date analyzed: 5/26, 6/1, 6/5/06	ELAP #: 11693

TOTAL METALS ANALYSIS

PARAMETER MDL RESULTS mg/L SILVER, Ag 0.05 mg/L <0.05 0.05 mg/L ALUMINUM, AI 14.6 ARSENIC, As 0.05 mg/L < 0.05 BARIUM, Ba 1.00 ma/L <1.00 BERYLLIUM, Be 0.05 mg/L < 0.05 CALCIUM, Ca 0.05 mg/L 12.1 CADMIUM, Cd 0.05 mg/L < 0.05 COBALT, Co 0.05 mg/L < 0.05 CHROMIUM, Cr 0.05 mg/L 0.31 COPPER, Cu 0.05 mg/L 0.26 IRON, Fe 0.05 mg/L 72.5 MERCURY, Hg 0.002 mg/L < 0.002 POTASSIUM, K 0.05 mg/L 5.69 MAGNESIUM, Mg 0.05 mg/L 5.11 MANGANESE, Mn 0.05 mg/L 2.27 MOLYBDENUM, Mo 0.05 mg/L 0.11 SODIUM, Na 0.05 mg/L 41.3 NICKEL, Ni 0.05 mg/L 0.17 LEAD, Pb 0.005 mg/L 0.025 ANTIMONY, Sb $0.05 \, \text{mg/L}$ < 0.05 0.05 mg/L SELENIUM, Se < 0.05 THALIUM, TI 0.05 mg/L < 0.05 VANADIUM, V 0.05 mg/L < 0.05 ZINC, Zn 0.05 mg/L 1.59

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Mishael Verall.

52 of 52 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue
	(GW-5)
Date received: 5/23/06	Laboratory ID: 1109704
Date analyzed: See Below	Matrix: Liquid

ANALYTICAL RESULTS

PARAMETER	METHOD	DATE ANALYZED	RESULTS
Chloride	EPA 300.0	5/24/06	55 mg/L
Sulfate (as SO4)	EPA 300.0	5/24/06	50 mg/L
Ammonia (as N)	SM 18 4500-NH3 C	5/26/06	<1 mg/L
Nitrate (as N)	EPA 300.0	5/24/06	2.0 mg/L
Nitrite (as N)	EPA 300.0	5/24/06	<0.5mg/L
Bromide	EPA 300.0	5/24/06	<1.0 mg/L
Orthophosphate (as P)	EPA 300.0	5/24/06	<1.0 mg/L
Fluoride, Total	EPA 300.0	5/24/06	<1.0 mg/L

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)
Date received: 5/23/06	Laboratory ID: 1109722
Date extracted: 5/26/06	Matrix: Liquid
Date analyzed: 5/26/06	ELAP #: 11693

Parameter	CAS No.	MDL	Results ug/L
ACETONE	62-64-1	5.00 ug/L	<5.00
BENZENE	71-43-2	0.50 ug/L	<0.50
BROMOBENZENE	108-86-1	0.50 ug/L	<0.50
BROMOCHLOROMETHANE	74-97-5	0.50 ug/L	<0.50
BROMODICHLOROMETHANE	75-27-4	0.50 ug/L	<0.50
BROMOFORM	75-25-2	0.50 ug/L	< 0.50
BROMOMETHANE	74-83-9	0.50 ug/L	<0.50
2-BUTANONE (MEK)	78-93-3	1.00 ug/L	<1.00
n-BUTYLBENZENE	104-51-8	0.50 ug/L	< 0.50
sec-BUTYLBENZENE	135-98-8	0.50 ug/L	< 0.50
tert-BUTYLBENZENE	98-06-6	0.50 ug/L	<0.50
CARBON DISULFIDE	75-15-0	0.50 ug/L	< 0.50
CARBON TETRACHLORIDE	56-23-5	0.50 ug/L	< 0.50
CHLOROBENZENE	108-90-7	0.50 ug/L	< 0.50
CHLOROETHANE	75-00-3	0.50 ug/L	<0.50
CHLOROFORM	67-66-3	0.50 ug/L	< 0.50
CHLOROMETHANE	74-87-3	0.50 ug/L	< 0.50
2-CHLOROTOLUENE	95-49-8	0.50 ug/L	<0.50
4-CHLOROTOLUENE	106-43-4	0.50 ug/L	<0.50
CHLORODIBROMOMETHANE	124-48-1	0.50 ug/L	<0.50
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.50 ug/L	<0.50
1,2-DIBROMOETHANE	106-93-4	0.50 ug/L	<0.50
DIBROMOMETHANE	74-95-3	0.50 ug/L	<0.50
1,2-DICHLOROBENZENE	95-50-1	0.50 ug/L	<0.50
1,3-DICHLOROBENZENE	541-73-1	0.50 ug/L	<0.50
1,4-DICHLOROBENZENE	106-46-7	0.50 ug/L	<0.50
DICHLORODIFLUOROMETHANE	75-71-8	0.50 ug/L	<0.50
1,1-DICHLOROETHANE	75-34-3	0.50 ug/L	<0.50
1,2-DICHLOROETHANE	107-06-2	0.50 ug/L	<0.50
1,1-DICHLOROETHENE	75-35-4	0.50 ug/L	<0.50
cis-1,2-DICHLOROETHENE	156-59-2	0.50 ug/L	<0.50
trans-1,2-DICHLOROETHENE	156-60-5	0.50 ug/L	<0.50
1,2-DICHLOROPROPANE	78-87 - 5	0.50 ug/L	<0.50
1,3-DICHLOROPROPANE	142-28-9	0.50 ug/L	<0.50
2,2-DICHLOROPROPANE	594-20-7	0.50 ug/L	<0.50
1,1-DICHLOROPROPENE	563-58-6	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)
Date received: 5/23/06	Laboratory ID: 1109722
Date extracted: 5/26/06	Matrix: Liquid
Date analyzed: 5/26/06	ELAP #: 11693

Parameter	CAS No.	MDL	Results ug/L
cis[Z]-1,3-DICHLOROPROPENE	10061-01-5	0.50 ug/L	<0.50
Trans[E]-1,3-DICHLOROPROPENE	10061-02-6	0.50 ug/L	<0.50
ETHYLBENZENE	100-41-4	0.50 ug/L	<0.50
HEXACHLOROBUTADIENE	87-68-3	0.50 ug/L	<0.50
2-HEXANONE	591-78-6	0.50 ug/L	<0.50
ISOPROPYLBENZENE	98-82-8	0.50 ug/L	<0.50
p-ISOPROPYLTOLUENE	99-87-6	0.50 ug/L	< 0.50
METHYLENE CHLORIDE	75-09-2	0.50 ug/L	<0.50
METHYL ISOBUTYL KETONE (MIBK)	108-10-1	0.50 ug/L	<0.50
MTBE	1634-04-4	0.50 ug/L	<0.50
NAPHTHALENE	91-20-3	0.50 ug/L	<0.50
n-PROPYLBENZENE	103-65-1	0.50 ug/L	<0.50
STYRENE	100-42-5	0.50 ug/L	<0.50
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.50 ug/L	<0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.50 ug/L	<0.50
TETRACHLOROETHENE	127-18-4	0.50 ug/L	<0.50
TOLUENE	108-88-3	0.50 ug/L	<0.50
1,2,3-TRICHLOROBENZENE	87-61-6	0.50 ug/L	<0.50
1,2,4-TRICHLOROBENZENE	120-82-1	0.50 ug/L	<0.50
1,1,1-TRICHLOROETHANE	71-55-6	0.50 ug/L	<0.50
1,1,2-TRICHLOROETHANE	79-00-5	0.50 ug/L	<0.50
TRICHLOROETHENE	79-01-6	0.50 ug/L	<0.50
TRICHLOROFLUOROMETHANE	75-69-4	0.50 ug/L	<0.50
1,2,3-TRICHLOROPROPANE	96-18-4	0.50 ug/L	<0.50
1,2,4-TRIMETHYLBENZENE	95-63-6	0.50 ug/L	<0.50
1,3,5-TRIMETHYLBENZENE	108-67-8	0.50 ug/L	<0.50
VINYL CHLORIDE	75-01-4	0.50 ug/L	<0.50
p & m-XYLENE	1330-20-7	1.00 ug/L	<1.00
o-XYLENE	1330-20-7	0.50 ug/L	<0.50

MDL = Minimum Detection Limit.

106 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)
Date received: 5/23/06	Laboratory ID: 1109722
Date extracted: 6/2/06	Matrix: Liquid
Date analyzed: 6/2/06	ELAP #: 11693

EPA METHOD 314.0

PARAMETER	MDL	RESULTS ug/L
Perchlorate	4.0 ug/L	<4.0

MDL = Minimum Detection Limit.

Michael Veraldi-Laboratory Director

Michael Verail

107 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)	
Date received: 5/23/06	Laboratory ID: 1109722	
Date extracted: 5/24/06	Matrix: Liquid	
Date analyzed: 5/24/06	ELAP #: 11693	

EPA METHOD 525.2

PARAMETER	CAS No.	MDL	RESULTS ug/L
HEXACHLOROBENZENE	118-74-1	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)PHTALATE	117-81-7	1.0 ug/L	<1.0
BENZO-a-PYRENE	50-32-8	0.2 ug/L	<0.2
PENTACHLOROPHENOL	87-86-5	0.8 ug/L	<0.8
BUTACHLOR	23184-66-9	0.2 ug/L	<0.2
Bis(2-ETHYLHEXYL)ADIPATE	103-23-1	0.2 ug/L	<0.2
HEXACHLOROCYCLOPENTADIENE	77-47-4	0.2 ug/L	<0.2

MDL = Minimum Detection Limit.

Michael Veraid

108 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)
Date received: 5/23/06	Laboratory ID: 1109722
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 508/551

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALACHLOR	15972-60-8	0.1 ug/L	<0.1
ATRAZINE	1912-24-9	2 ug/L	<2
METOLACHLOR	51218-45-2	5.0 ug/L	<5.0
METRIBUXIN	21087-64-9	5.0 ug/L	<5.0
PROPACHLOR	1918-16-7	5.0 ug/L	<5.0
SIMAZINE	122-34-9	0.2 ug/L	<0.2
1,2-Dibromoethane	106-93-4	0.01 ug/L	<0.01
1,2-Dibromo-3-Chlorpropane	96-12-8	0.1 ug/L	<0.1

MDL = Minimum Detection Limit.

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)
Date received: 5/23/06	Laboratory ID: 1109722
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 608

PARAMETER	CAS No.	MDL	RESULTS ug/L
ALDRIN	309-00-2	0.01 ug/L	<0.01
α - BHC	319-84-6	0.01 ug/L	<0.01
β - BHC	319-85-7	0.01 ug/L	<0.01
δ - BHC	319-86-8	0.01 ug/L	<0.01
γ - BHC (Lindane)	58-89-9	0.02 ug/L	<0.02
CHLORDANE	12789-03-6	0.02 ug/L	<0.02
4,4'-DDD	72-54-8	0.01 ug/L	<0.01
4,4'-DDE	72-55-9	0.01 ug/L	<0.01
4,4'-DDT	50-29-3	0.05 ug/L	<0.05
DIELDRIN	60-57-1	0.01 ug/L	<0.01
ENDOSULFAN I	959-98-8	0.01 ug/L	<0.01
ENDOSULFAN II	33212-65-9	0.01 ug/L	<0.01
ENDOSULFAN SULFATE	1031-07-8	0.02 ug/L	<0.02
ENDRIN	72-20-8	0.01 ug/L	<0.01
ENDRIN ALDEHYDE	7421-93-4	0.01 ug/L	<0.01
ENDRIN KETONE	53494-70-5	0.02 ug/L	<0.02
HEPTACHLOR	76-44-8	0.01 ug/L	<0.01
HEPTACHLOR EPOXIDE	1024-57-3	0.01 ug/L	<0.01
4,4'-METHOXYCHLOR	72-43-5	0.01 ug/L	<0.01
TOXAPHENE	8001-35-2	20 ug/L	<20
AROCLOR-1016	12674-11-2	20 ug/L	<20
AROCLOR-1221	1104-28-2	20 ug/L	<20
AROCLOR-1232	11141-16-5	20 ug/L	<20
AROCLOR-1242	53469-21-9	20 ug/L	<20
AROCLOR-1248	12672-29-6	20 ug/L	<20
AROCLOR-1254	1109769-1	20 ug/L	<20
AROCLOR-1260	11096-82-5	20 ug/L	<20

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)
Date received: 5/23/06	Laboratory ID: 1109722
Date extracted: 5/27/06	Matrix: Liquid
Date analyzed: 5/27/06	ELAP #: 11693

EPA METHOD 515

PARAMETER	CAS No.	MDL	RESULTS ug/L
Dalapon	75990	20 ug/L	<20
Dicamba	1918009	1.0 ug/L	<1.0
2-,4-D	94757	5.0 ug/L	<5.0
2,4,5-TP (Silvex)	93721	5.0 ug/L	<5.0
Dinoseb	88857	0.5 ug/L	<0.05
Picloram	1918021	5.0 ug/L	<5.0

MDL = Minimum Detection Limit.

Michael Veraid

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)
Date received: 5/23/06	Laboratory ID: 1109722
Date extracted: 5/26, 5/31, 6/1/06	Matrix: Liquid
Date analyzed: 5/26, 5/31, 6/1/06	ELAP #: 11693

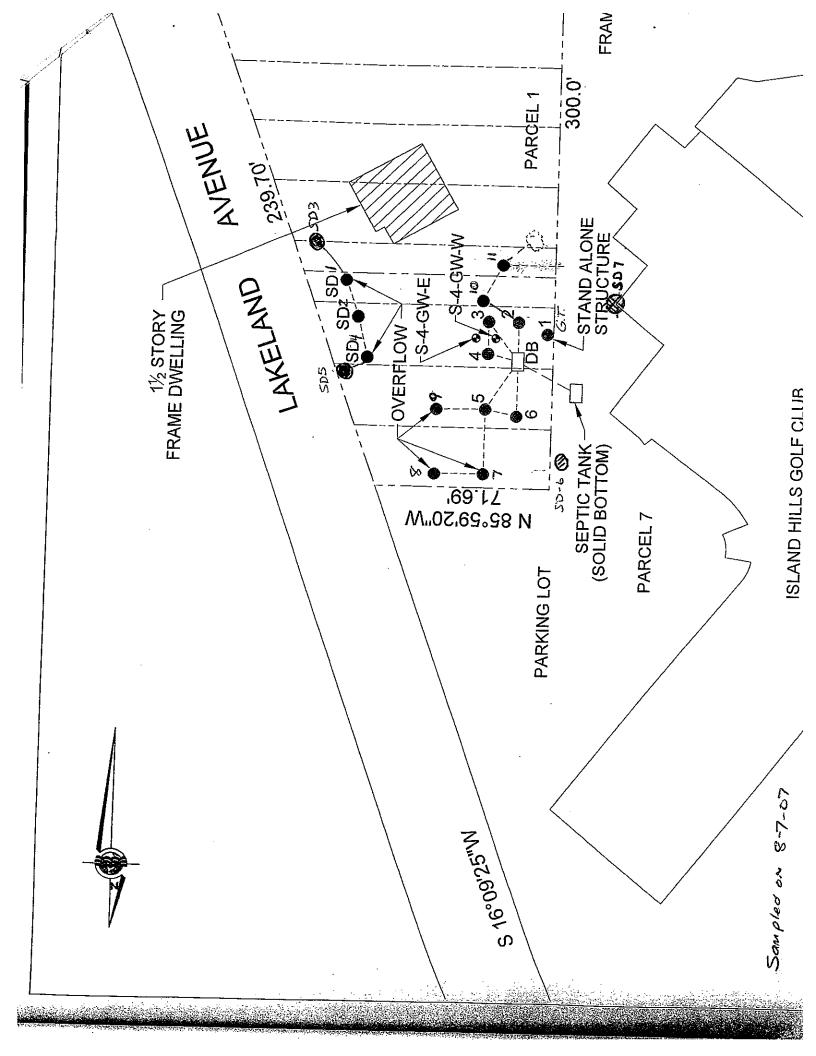
TOTAL METALS ANALYSIS

PARAMETER	MDL	RESULTS mg/L
SILVER, Ag	0.05 mg/L	<0.05
ALUMINUM, AI	0.05 mg/L	6.51
ARSENIC, As	0.05 mg/L	<0.05
BARIUM, Ba	1.00 mg/L	<1.00
BERYLLIUM, Be	0.05 mg/L	<0.05
CALCIUM, Ca	0.05 mg/L	11.6
CADMIUM, Cd	0.05 mg/L	<0.05
COBALT, Co	0.05 mg/L	<0.05
CHROMIUM, Cr	0.05 mg/L	0.09
COPPER, Cu	0.05 mg/L	0.10
IRON, Fe	0.05 mg/L	26.1
MERCURY, Hg	0.002 mg/L	<0.002
POTASSIUM, K	0.05 mg/L	3.35
MAGNESIUM, Mg	0.05 mg/L	5.13
MANGANESE, Mn	0.05 mg/L	0.80
MOLYBDENUM, Mo	0.05 mg/L	<0.05
SODIUM, Na	0.05 mg/L	13.3
NICKEL, Ni	0.05 mg/L	<0.05
LEAD, Pb	0.005 mg/L	<0.005
ANTIMONY, Sb	0.05 mg/L	<0.05
SELENIUM, Se	0.05 mg/L	<0.05
THALIUM, TI	0.05 mg/L	<0.05
VANADIUM, V	0.05 mg/L	<0.05
ZINC, Zn	0.05 mg/L	0.24

MDL = Minimum Detection Limit.

112 of 112 pages

Client: PW Grosser	Client ID: RSL-Lakeland Avenue (GW-6)
Date received: 5/23/06	Laboratory ID: 1109722
Date analyzed: See Below	Matrix: Liquid

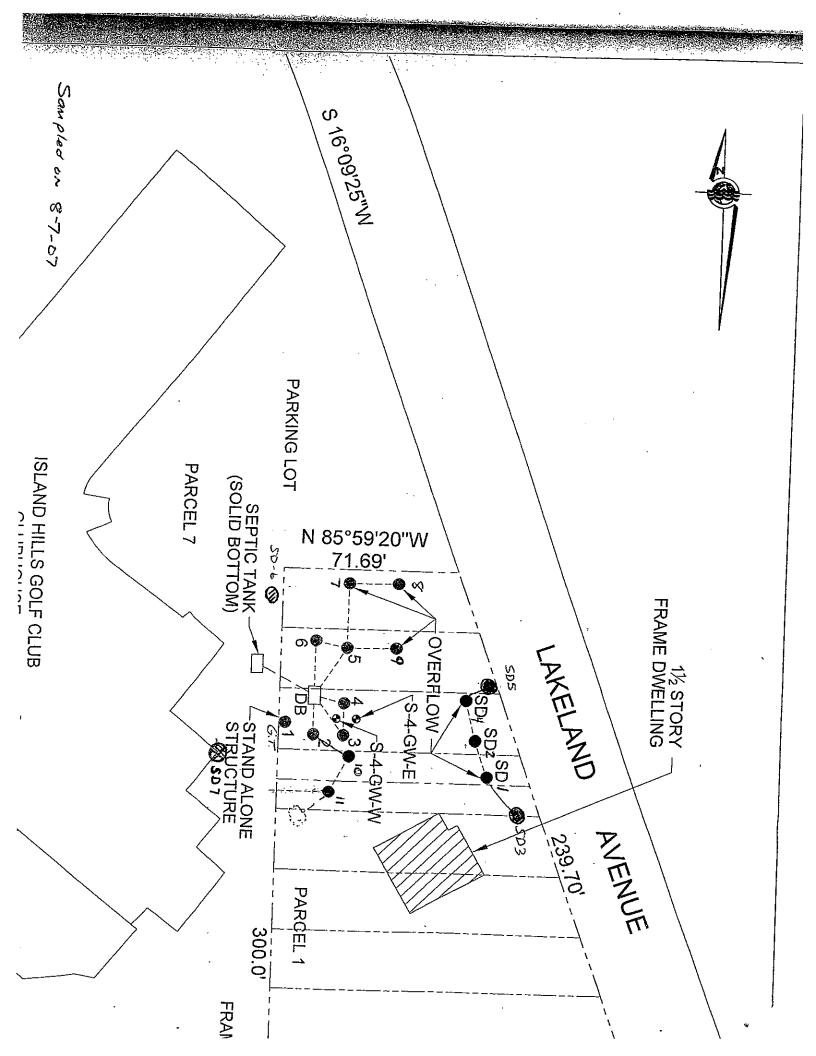

ANALYTICAL RESULTS

PARAMETER	METHOD	DATE ANALYZED	RESULTS
Chloride	EPA 300.0	5/24/06	23 mg/L
Sulfate (as SO4)	EPA 300.0	5/24/06	59 mg/L
Ammonia (as N)	SM 18 4500-NH3 C	5/26/06	<1 mg/L
Nitrate (as N)	EPA 300.0	5/24/06	1.9 mg/L
Nitrite (as N)	EPA 300.0	5/24/06	<0.5 mg/L
Bromide	EPA 300.0	5/24/06	
Orthophosphate (as P)	EPA 300.0	5/24/06	<1.0 mg/L
Fluoride, Total	EPA 300.0	5/24/06	<1.0 mg/L <1.0 mg/L

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES INDUSTRIAL WASTE AND HAZARDOUS MATERIALS CONTROL 15 HORSEBLOCK PLACE, FARMINGVILLE, N.Y. 11738

NAME OF		•
NAME OF Island Hills Golf Club	OWNER/ OFFICER	
COMPANY	OTTIOE!	PAGEOF
PLANT	CONTACT	TEL.
ADDRESS Lakeland Ave VILLAGE S	ayville	
MAILING .	TOWN	ZIP
ADDRESS	<u> </u>	
DATE 8-7-07 TIME ORIG. PERIODIC RE.	NO	SEWAGE PUBLIC
	WASTE WASTE H&H	SYSTEM PRIVATE
Sanitary & storm drain samplin	29 IN/F+E Stevek	Caplan, 499-222
2D-1 4pcr 20-6		
S-7 S-8 S-9 S-10 S-11 DB-	1 57-1	•
SD-1+SD-4 Slotted covers		
50-2,50-3 solid covers over flow from s	50-1	
SD-5 Solid cover overflow from		
SID+SII Feed off from S-2.	Another pipe exit.	s S-// X
	to SW. possible 1	3G pool exists
Sample all	SVOC, VOC, notols	York Lobs
ODE 10 feet deep dry Med brown	soil no oder.	
30-5 /2 4 dry med brown	Soil pooder	
SD-4 7 doep 2' H2O Med brown &		
50-2 11 deep 4 flz0 wet brown s		
SD-1 7 deep 41 H20 OK brow/black		
SD-3 60'9" deep dry Med brown soi		<u> </u>
S-11 12 deep dry Lt. brown soi		
9-10 17/deep 6/lig	эт, по вергие свет	
5-7,8,9 composite 7-20' 18'1. 8.		
	-12' 7'1,g 9-12	1 7 / lig
72		· · · · · · · · · · · · · · · · · · ·
JOCS SOLID BOTT	om Sludge taken.	
SD-7 10' full of liquids		
S-1 is grease trap		
/		
Cooler hasice. All samples to Y	Ork. No solit	
9-10-07 Received Cleanout plan u	of sampling case the	
8 structures to be clea		
SD-2, 3, 5, 6, 7	THO DUT	
5-4		
D13-1		· .
ST-1		File

18-234..8/94cb



Suffolk County Department of Health Services Office of Pollution Control Farmingville, N.Y. Remediation and Spills Data Entry Form

File Reference Number:		
_ 0	7235	
Keyed_	4-2-08/28	
	Nata	

	2007 - 120	NYSDE	C Spill No.:	SIC Code			otification/S	ample Date:		up Date:	
I	Facility Name: ISI a	- 1 14	11 0 1	C. Ci.				Contact Person			
	3/6	~ G PI 1	118 (2014	Club				Contact Person	•		
		eland 1						Tel. Number:	589-	2200	<u> </u>
	Sayui	ILe, N	4 1178	2				Owner/Operato	or:		
				Spill Informat	ion Se	ction	· <u></u> · · · · · · · · · · · ·				
	Location of Spill:	n drai						Tax Map No:			
	3700	000						500	280	i	15
								District	Section	Block	Lot
								Spill Type:			
	Site Type: parking	1=4		☐ NYSDEC Resp	onse Ur	nit on Sit	e		er disc		
ĺ	Referred By:			Spilled Liquid r	eached (GW Tab	le l	Spill Material:			
Į	FIE							Quantity Spille	ed: <u> </u>	プロシン	Gals
[Remedia	tion and Clean-L	lo Info	rmatic	on Sectio	n	· · · · · · · · · · · · · · · · · · ·		
	Name of Contractor:	rronm			Contac	t:	betina		Tel. No:		,,,
İ	5 Storm Drain	1 -							<u> </u>	·	
	Storm Drain		Item		Yes	No	Item		Ye	s No]
	Sanitary Cesspool]	Necessary Ed	· · · · · · · · · · · · · · · · · · ·	1/	<u> </u>		Obtained	/]
	Septic Tank]. [Unsafe Proce			ļ	*	Required	-		4
	Soil Excavation	1	Pressure Was	oils Visually Clean	+	<u>i</u>	Bill of La	hanifest Attache	2 /		-
	•		Remaining So	···	 	1	 -	of Lading Attac	hed		
	Tank Removal		Soil/Sludge S	torage Compliance				oved from Site	/		1
	Tank Clean-ups		Soil Borings (Completed			Enter Nar	ne of Soil Borin	g Contractor	Below:	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
		_		-							
ļ	Facility Registration No.		Clean Up Stat	us: [] Completed	[]A	dditiona	al Work Red	uired [/] Sam	ple Results F	ending	
	Tank Number Tank Number	Volume	of Liquid Ren	noved 6500	Gai	s Sc	olids Remo	oved 28 -	Cu. Yds:⁄, T	ons / D	rums
Ĺ		1	· · ·					TOTAL		· · · · · · · · · · · · · · · · · · ·	
77	Comments (sketches on ba	nck): (leanout .	of SD-2	S) 3	50	~5 ⁻			
	13 yds remor			egains bac		0 1	1B ye	ard.			
- 1	Endpoints to		SD:2 S	VCC + lea	d				;		 ,
ļ	,		SD-3 5	VOC							
1			S D.75 S	VOC							
	All samples n	vere c	lean san	d, no ode	. <u>en</u>	2	anple	s to Y	ork:	Nos	pro
18	Cleanout of S	D-7	7010	removed. N	a lin				н.		
24	2nd cleanout S		C+ Metals	endpt. (1	2000	ut o	F 50-	-6 8yd	s remove	ed.	
ſ	9,	rd Di	-					0			
	Signature of Inspector	ra Lin	<u>د</u>		_			タ-7フ-ごフ ate Form Comple			
L			·					acc roun comple			

Signature of Inspector

Suffolk County Department of Health Services

Office of Pollution Control Farmingville, N.Y.

Remediation and Spills Data Entry Form

File	Reference Number:
	07235
	1: 0 10 (60)

Date

	SCDHS Spill No.:	NYSDEC	Spill No.:	SIC Code:			otification/S	ample Date:	Clean-up Date 9/14/0	
	Facility Name: IS (and Hil	ls Golf C	lub				Contact Persor	n:	
			d Ave.					Tel. Number:	589-2200	<u>۔</u> د
	5	ay ville	NY 117	82				Owner/Operato	or:	
			s	pill Informati	on Se	ction				
	Location of Spill:	n dra	n + sanita	ru dustr	м			Tax Map No:		
				7 273.0	-			500	280 1	
Ì	inp	<u>arking</u>	JBT.			·····		District	Section Block	Lot
								Spill Type:	per dischar	20.60
	Site Type: panking	Lot		NYSDEC Respo	nse Un	it on Site	9	•	SVOCs, VOC	
Ī	Referred By:			Spilled Liquid re	ached (SW Tabl	e		-	
Ĺ	Referred By: PW Gr	esser /	F + E					Quantity Spill	led: Un Known	Gals
ſ			Remediation	and Clean-U	o Info	rmatic	n Section	n		
ĺ	Name of Contractor:	B Env	ironmental		Contac	t:	batine		Tel. No:	-
Ī	Storm Drain			<u>'</u>						
			Itém		Yes	No	Item	Olataia a d	Yes No	<u>-</u>
-	Sanitary Cesspool		Necessary Equipm Unsafe Procedure	· · · · · · · · · · · · · · · · · · ·	-			Obtained Required		
	Septic Tank		Pressure Washing		-	 		Manifest Attach	ned	7
	Soil Excavation		Remaining Soils \	isually Clean	/		Bill of La	ding		
	Tank Removal		Remaining Soils C		<u> </u>	/	 	of Lading Atta		
-	Topic Cloop upp	_	Soil/Sludge Storag			<u> </u>		oved from Site	ing Contractor Below:	
	Tank Clean-ups			Earth c	200	<u>!</u>	Line 140	ine or son bon	ing Combactor Delow.	-
	Facility Registration No.	-	Clean Up Status:			dditiona	l Work Re	quired Sar	mple Results Pending	
	Tank Number									
	Tank Number	Volume	of Liquid Remove	5000	Ga	ls So	lids Rem	oved 9	Cu. Yds./ Tons / I	Orums
, [Comments (sketches on b									
14	ST-1+0		,	going to	Ber	200	P+.	Greuse	and other	
	Solids go	ng to f	GM.			 _				,
			C, VOC + M.	etals tal	Ken.	, 50	mple	was gi	reyish w/	·
	_ Sanitary o	oder-						<u> </u>	·	
	_ Cooler had	ice. S	Samples go	oing to Yo	<u>~ K.</u>	<u>. N</u>	0 501	rts.		
										
-								<u> </u>		
Ļ										
- 1	\mathcal{O}	1 1	>					Q - /1/ 10	-	

Date Form Completed

COUNTY OF SUFFOLK

DEPARTMENT OF HEALTH SERVICES

HUMAYUN J. CHAUDHRY, D.O., M.S. Commissioner

April 1, 2008

Freudenthal & Elkowitz Consulting Group, Inc. 1757-24 Veterans Memorial Highway Islandia, New York 11749

Attn: Stephen Kaplan

Re: Environmental Remediation - Closure Report Island Hills Golf Club, Sayville, New York

Gentlemen:

As a follow-up to your submitted closure report, this correspondence is to advise you that a review of the procedures utilized during cleanup activities conducted from September 14, 2007 to September 24, 2007 with Suffolk County oversight has been completed.

Based upon this review, it has been determined that a satisfactory remediation of the concerned areas of contamination was accomplished, and no further extraction is mandated.

The above matter has been closed, since the required documents were recently received and incorporated into the Department's records.

Should you have any questions concerning this matter, please contact me at 631-854-2514.

Sincerely,

D.C. Gobbi, R.S. Senior Public Health Sanitarian

Office of Pollution Control

DCG/lc

FREUDENTHAL & ELKOWITZ CONSULTING GROUP, INC.

Theresa Elkowitz, President

1757-24 Veterans Memorial Highway

Islandia, New York 11749

Tel: (631) 499-2222

Fax: (631) 499-5928

fecg@fecg.us

November 2, 2007

VIA OVERNIGHT CARRIER

Mr. Dennis Gobbi Senior Public Health Sanitarian Office of Pollution Control Suffolk County Department of Health Services 15 Horseblock Place Farmingville, New York 11738

Re: Summary of UIC Closure Activities

Island Hills Golf Club (Parcels 1 & 2)

Sayville, New York

Dear Mr. Gobbi:

On behalf of our client, Island Hills Golf Club (IHGC), Freudenthal & Elkowitz Consulting Group, Inc. (F&E) is submitting, for your review and approval, this Underground Injection Control (UIC) Closure Report for the above-referenced property (see Figure 1).

Background

IHGC currently leases the subject property and utilizes same as an asphalt-paved parking lot and formerly as a groundskeeper's residence. Further, portions of the subject property (primarily underlying the asphalt-paved surface) are equipped with an on-site sanitary system and stormwater drywells (see Figure 2).

As indicated on Figure 2, the on-site sanitary system is constructed with a septic tank ("ST-1") that discharges to a distribution box ("DB-1") and a stand alone cesspool ("S1"). DB-1 is a solid-bottomed concrete sanitary structure that discharges effluent to five cesspools ("S2," "S3," S4, "S5" and "S6"). Cesspool S2 was determined by F&E to discharge into overflow cesspools "S10" and "S11." With the exception of cesspool S11, no at-grade leaching structures are equipped with a subgrade overflow pool. The location of the overflow cesspool for S11, if present, was determined to be located beneath a lawn area to the west of S11. Cesspool S5 was determined to discharge into three overflow cesspools ("S7", "S8" and "S9") in a Phase II Environmental Site Assessment dated April 16, 2006, prepared by P.W. Grosser.

SUDJ HON -2 WW 9: 47

RECEIVED SUFFOLK COUNTY OFFT OF HEALTH SERVICES POLLUTION CONTROL

Based upon a telephone conversation with you on July 30, 2007 and field observations with SCDHS Sanitarian Edward Roe, F&E collected bottom sediment samples from the un-evaluated UIC Program-related structures (i.e., not included as part of the aforementioned P.W. Grosser report) on August 7, 2007. This included accessing and sampling (wherever possible) ST-1, DB-1, a composite sample of S7, S8 and S9, S10, S11, and seven stormwater drywells: "SD-1" through "SD-7."

As required by SCDHS protocols, the bottom sediment samples from the remaining UIC structures were analyzed for Suffolk County List (SCL) volatile organic compounds (VOCs) using the United States Environmental Protection (USEPA) Method 8260, SCL semi-volatile organic compounds (SVOCs) using USEPA Method 8270 and SCL metals using the USEPA 6010/7000 Series. The analytical data were compared to the SCDHS Action Levels included in the Suffolk County Standard Operating Procedure for the Administration of Article 12 of the Suffolk County Sanitary Code, SOP No. 9-95 – Pumpout and Soil Cleanup Criteria, dated January 7, 1999 (see Table 1 and Attachment A). Based on these analytical data as well as information obtained from the P.W. Grosser report, and in accordance with F & E's August 31, 2007 SCDHS-approved UIC Closure Plan, it was determined that the bottom sediments within ST-1, DB-1, S4, SD-2, SD-3, SD-5 SD-6 and SD-7 required remediation.¹

In addition to the aforementioned samples, a bottom sediment/sludge waste characterization sample was collected from cesspool S4 on August 7, 2007 (Attachment A), in preparation for removal of elevated concentrations of 1,4-dichlorobenzene. S4 was identified as an issue of environmental concern in the Phase II Environmental Site Assessment dated April 16, 2006, prepared by P.W. Grosser. More specifically, the P.W. Grosser report identified contaminants in contravention of SCDHS regulations in cesspool S4. According to AB Environmental ("AB;" selected environmental remediation contractor for the subject property), the Toxicity Characteristic Leaching Procedure (TCLP) concentration detected for 1,4-dichlorobenzene within the S4 waste characterization sample was within the parameters for regulated non-hazardous disposal. Further, the remaining compounds reported within the P.W. Grosser SCL VOC data for S4 did not warrant further waste characterization analyses, and likewise, were within the parameters for regulated non-hazardous disposal.

Remediation Activities

On-site Sanitary System

In accordance with the SCDHS-approved UIC Closure Plan, the remediation of ST-1, DB-1 and S4 was conducted under F&E and SCDHS oversight on September 14 and 24, 2007. These activities included the pumping out of liquids and the removal of impacted sludge and bottom sediments present within these structures.

¹ It should be noted that no sludges were present within the septic tank (ST-1) during F&E's August 7, 2007 sampling activities. The remediation of standing liquids and bottom sediments (if identified) within ST-1 were required solely based upon the concentrations of the VOCs and metals reported in cesspool S-4.

On September 14, 2007, AB utilized a power washer and vactor in ST-1 and DB-1 to remove bottom sediments/sludge and expose the hard bottoms of these structures. Mr. Roe inspected both structures and verbally approved the remediation of same.

A vactor was utilized in S4 to remove bottom sediments/sludge until clean soil conditions were achieved. Mr. Roe observed the collection of a bottom sediment end-point sample from within S4, and verbally approved the cleanout subject to analytical results.

In accordance with SCDHS direction, the end-point sample collected from S4 was analyzed for SCL VOCs using USEPA Method 8260 and SCL metals using the USEPA 6010/7000 Series (see Table 1 and Attachment A). Due to end-point sample concentrations of 1,3-dichlorobenzene, chlorobenzene and copper in exceedance of SCDHS Cleanup Objectives, AB removed an additional volume of sediment (approximately three cubic yards) from S4 on September 24, 2007. Mr. Roe observed the collection of a bottom sediment end-point sample from within S4, and verbally approved the cleanout subject to analytical results. The sample was analyzed for SCL VOCs using USEPA Method 8260 and SCL metals using the USEPA 6010/7000 Series. The laboratory data indicates that no SCL VOCs or SCL metals were detected above SCDHS Cleanup Objectives (see Table 1 and Attachment A).

As a result of removal of impacted bottom sediments described above, cesspool S4 became undermined. In order to address this condition, AB backfilled S4 with approximately ten yards of fill on September 27, 2007.

Based upon these data and the above information, S4, ST-1 and DB-1 were successfully remediated, and no further actions are warranted with respect to the on-site sanitary system.

Stormwater Leaching Structures

In accordance with the SCDHS-approved UIC Closure Plan, the remediation of five stormwater leaching structures (SD-2, SD-3, SD-5, SD-6 and SD-7) was conducted under F&E and SCDHS oversight on September 17, 18, 21 and 24 2007. These activities included the pumping out of liquids and the removal of impacted sludge and bottom sediments present within these structures.

On September 17, 18, and 24, 2007, AB utilized a vactor to remove impacted bottom sediments from the five stormwater leaching structures until clean soil conditions were achieved. It should be noted that prior to remediation, SD-6 was heavily overgrown with tree roots. The roots were removed with hand tools by AB on September 21, 2007 in order to facilitate the removal of impacted bottom sediments from this structure. Following the remediation of all five structures, Mr. Roe observed the collection of end-point samples from each and verbally approved the cleanouts pending analytical results.

In accordance with SCDHS direction, all five end-point samples collected from the five stormwater leaching structures were analyzed for SCL SVOCs using USEPA Method 8270. In addition, the SD-2 end-point sample was analyzed for SCL metals using the USEPA 6010/7000 Series (see Table 1 and Attachment A). The laboratory data indicates that no SCL SVOCs or SCL metals were detected above SCDHS Cleanup Objectives in any of the five end-point samples (see Table 1 and Attachment A).

As a result of the removal of impacted bottom sediments described above, all five stormwater leaching structures became undermined. In order to address this condition, AB backfilled SD-2, SD-3, SD-5 and SD-7 with approximately five yards of fill each on September 21, 2007. SD-6 was backfilled with ten yards of fill on September 27, 2007.

Based upon these data and the above information, all five stormwater leaching structures were successfully remediated, and no further actions are warranted with respect to the on-site stormwater leaching system.

Disposal Activities

Prior to conducting any remediation activities at the subject property, F&E coordinated the disposal of liquids generated from the on-site sanitary system and stormwater leaching structures with the Suffolk County Department of Public Works (SCDPW). SCDPW correspondence dated September 14, 2007, approving the disposal of the liquids at the County's Bergen Point facility has been provided in Attachment B.

Using a vacuum pump truck, a total of 5,000 gallons of liquids were removed from the on-site sanitary system (ST-1, DB-1 & S4) on September 14, 2007 by Wind River Environmental Corp (Wind River) and disposed of at Suffolk County's Bergen Point facility. On September 17, 2007 Wind River pumped a total of 6,500 gallons of liquids from stormwater drywells SD-2 and SD-7, and disposed of same at Suffolk County's Bergen Point facility. Manifests for the aforementioned 11,500 gallons of liquid disposal have been provided in Attachment C. No standing liquid was observed within the remaining stormwater structures scheduled for remediation (SD-3, SD-5 and SD-6).

The contaminated sludges and sediments from the on-site sanitary system and stormwater drywells were disposed of in accordance with appropriate federal, state and local regulations. A total of 56.81 tons of materials were disposed of at the following facilities: 8.66 tons at EarthCare, located at 972 Nicolls Road, Deer Park, New York; 16.19 tons at T.R.R.F., located at 200 Bordentown Road, Tullytown, Pennsylvania; and 17.73 tons and 14.23 tons at G.R.O.W.S., Inc., located at 1000 New Ford Mill Road in Morrisville, Pennsylvania. The transport and disposal documents are included in Attachment D.

Based upon the work conducted at the subject property, F&E believes that no further remedial actions are required. F&E respectively requests that the SCDHS provide their opinion in this matter.

Thank you in advance for your review of this matter. Please feel free to call either of the undersigned with any questions you may have.

Sincerely,

FREUDENTHAL & ELKOWITZ CONSULTING GROUP, INC.

Stephen Kaplan

Director of Environmental Services

SK/th

att.

cc: D. Ward

B. Warren, Esq.

David Kennedy

Environmental Technician II

			/		/			1	
			*/	:	./			J	ø
			<u>,</u> 340000000000000			14:3:3:3:3:3:			- Sample
Analyzis	SD-I		D-2	s	D-3.	SD-f	· · · · · · · · · · · · · · · · · · ·	p-s'	
SCL VOCs (vg/kg)	Infital Sample	· . · Pre-remediation . · .	Post remediation	Pre-remediation	L'ost remediation	. Initial Sample .	Pre-remediation	Post-remediation	Pre-remediation
1.2.4 -Trimethylbenzene	60	ND	NA	ND	NA	ND	ND	NA.	מאַ
I.2.4-Trichlorobenzene	ND	, ND	NA	ND	NA	ND	ND	NA.	ND
1.2-Dichlorohenzens	ND	ŅD	NA	ND	NA ·	ND	ND	NA	מא
1.3-Dichlorobenzene	ND	ND	NA	ND	NA	ND	ND	NA	ND
1.4-Dichlorobenzene	ND	ND	NA	ND	NA	ND	ND	NA NA	ND
4-Chlorotoluene	ND	ND	NA	ND	NA	ND	ND	NA.	ND
Chlorobenzene	ND	ND	NA	ND	NA	ND	ND	NA	ND
Methyl ethyl ketone	79	ND	NA	ND	NA	ND	ND	NA	ND
n-Isopropyitoluene	ND	ND	NA	ND	NA	ND	ND	NA.	ND
Toluene	ND	ND	NA	ND	NA	. 59	ND	NA	ND
101000	\$0.1		D-2	3	D-31::::::::::::::::::::::::::::::::::::			ni-š	
SCL Retals (mg/kg)			Part-remediation	Pre-temediation	Post remediation	Initial Sample	Pre-remediation	Post-remediation	Pre-rentediation
Arsenio	3.23	4.61	ND	2,38	NA	4.69	1.36	NA.	4.11
Cadmium	2,34	3.31	ND	0.64	NA	2.95	ND	NA NA	ND
Chromium	24.6	50.3	1.25	33	NA	29.1	3.72	NA.	21.9
Copper	99.6	88	6.44	74,4	NA	85.5	9.58	NA.	103
Lead	130	1,170	1212	70.9	NA	215	11.3	NA.	79.5
Nickel	13.4	27.3	1.17	12	ŅA	20.8	2.40	NA .	19.8
Silver	ND	0.81	ND	ND	NA	ND	מא	NA.	ND
Mercury	ND	ND	ND	ND	NA.	ND	ND	NA.	ND
Marcury			D-2		р з	SD-4	s	n-s:	
SCL SVOCa (na/kg)	Initial Samulé.	Pro rentalialista	Port-remediation	· Pre-remediation	· Part remediation	Initial Sample			Pre regiediadon
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	2,100
Benzo(a)pyrene	ND	ND	ND	1,400	ND	ND	2,000	ND	9,800
Benzo(a)pyrene Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	1,500	ND	7,508
Benzo(b)finoranthene	ND	ND	ND	2,488		ND	3,400	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15,000
Benzo(g.h.i) perviene	·ND	ND	ND	ND	סא	ND	ND	ND	2,000
Benzo(k):lluoranthene	ND	ND	ND	1,400	ND	ND	2,200		- 13,0D0
Chrysene	ND	1,300				ND	2,300		9,608
Indepo (1.2,3-cd) pyrene	ND	ND	ND	ND	ND	ND	ND	ND	2,500
Fluoranthene	2,100	1,900	ND	2,700	ND	2,000	4,700	ND	18,000
	1,400	ND	ND	1,400	ND	1,300	2,300	ND	10,000
Phenznihrene Pyrene	1,400	1,500	ND ND	2,200	ND	1,400	3,900	ND	14,000

Notes:
SCDHS Action Level - Article 12 - SOP No. 9-95 Pumpout and Cleanup Criteria, January 7, 1999.
ND - Analyte was not detected above method detection limit.
NA - Not Applicable.
* - Data taken from PW Grosser 2/26/05
* - Athough pre- remediation SVOC values for SD-7 did not exceed SCDHS Action Levels, this structure was remediated due to clevated SCL SVOC MDL levels in the initial sample analyses.
**- DB-1 as 2 shallow, hard bottom distribution box: all sediments and liquids were removed during remediation.
Bolded Value indicates detected concentration exceeded guidance value.

sland Hills Golf Course

		1		/						
				/			100	~ /		
	3, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	 				. 111			na ana ana an	auchier de la
		gg.			THOS.	4g vin	earl	nr-1		SCORS
dia Hora	القين المنافعة	. Dert remaile lar	Pre-remediation	Post-cemediation	Intifet Semale	Initial Sample	Initial Samule	Pre-Remediation	Artion Level	Cleanup Objective
quecum	ND	NA	ND		100	ND	ND	ND	4,800	2,400
-	ND ND	NA NA	47,569		ND	ND	ND	ND	6,800	3,400
	ND	NA NA	1,728,384		1,100	97	ND	ND	15,000	8,000
	ND ND	NA NA	31.736	()	59	ND	ND	ND	3,200	1,600
	ND	NA NA	511,639		570	99	ND	4,500	15,000	8,000
\neg	ND ND	NA.	11.773		NA.	NA	ND	NA	NA	NA
	ND ND	NA NA	354,182		2,400	230	ND	6,880	3,400	1,700
	ND	NA.	ND	ND	75	ND	ND	ND	500	300
$\overline{}$	1,900	NA.	ND	ND	190	52	ND	ND	7,800	3,900
	2,500	NA.	ДИ	ND	390	85	ND	ND D	3,000	1,500
		o.b	1.000	4-11-11-11-11-11-11-11	\$7.8.9	\$10	\$11	DB-144		SCDAS
initial				Post-vemediation			Initial Sample	Pre-Remodizion	Action Lovel	Gleanup Objective
	1.87	NA.	3.75	ND	0.73	1.66	ND	NA	25	7.5
	ND	NA	2.69	ND	ND	ND	ND	NA	10	1.0
	3,45	NA	18	ND	4.40	5,84	2.19	NA.	100	10.0
' 	39.3	NA	1,143	⊋ . (0, ≤)	163	295	32.9	NA NA	500	25,0
	18.1	NA .	74.8	1.79	12	22.20	3.07	NA NA	400	100.0
	1.89	NA	13	1.96	3.31	8.73	1.70	NA	1,000	13,0
	1.21	NA	21.4	ND	2.35	2,81	1.41	NA.	100	5.0
	ND	NA	1.09	MD	ND	ND	ND	NA	2.0	0.1
• • • • • • • • • • • • • • • • • • • •		,9° • • • • • • • • • • • • • • • • • • •		alougue de		\$18	311	DB-1**		SCDHS
digitod	· Pre-remeslation · ·	· Post remediation ·	Pre-remediation	Pest remediation.	Initial Sample	Initial Sample	· Indial Sample .	Pre Remodiation	Ardon Level	Gleanup Objective
	ND		47	NA	УD	ND	ND	NA	75,000	50,000
-	ND		62	NA .	ND	ND	ND	NA NA	22,000	11,000
	ND		127	NA	ND	ND	ND	NA.	6,000	3,000
	ND		93	NA	ND	ND	ND	- NA	2,200	1,100
.	ND		ND	NA	ND	ND	ND	NA NA	75,000	58,000
	ND'		ND	NA NA	ND	ND .	ND	NA NA	2,200	1,100
	ND	<u> </u>	115	NA	ND	ND	ND	NA NA	800	400
	ND		225	NA NA	ND	ND	ND	NA NA	75,000	59,000
	ND		ND	NA NA	ND	ND	ND	NA NA	75,000	50,000
	ND	V	202	NA.	ND	ND	ND	NA NA	75,000	50,000
	ND		225	NA	ND	ND	ND	NA	75,000	50,000

FREUDENTHAL & ELKOWITZ CONSULTINGROUP, INC.

Figure 2 - Sampling Locations

MA BILL

C2G Environmental Consultants, LLC

165 Sherwood Avenue Farmingdale, NY 11735

www.c2g.us

Tel (631) 414-7757 Fax (631) 843-6331

June 24, 2010

Island Hills Golf Club 458 Lakeland Avenue Sayville, NY 11782

Attn: Mr. Tony Caggiano

Re: Request for No Further Action

Island Hills Golf Club 458 Lakeland Avenue Sayville, NY 11782

Dear Mr. Caggiano:

In June, 2010, C2G Environmental Consultants, LLC (C2G) was retained by Mr. Robert Stasio of VIP Plumbing ad Heating Contracting, Inc. (VIP) to observe the tank excavation and to field screen tank excavation soils during the removal of one (1) - 1,000 gallon gasoline underground storage tank (UST) utilized at Island Hills Golf Club, Sayville. Due to Suffolk County Department of Health (SCDHS) requirements single walled USTs are required to be permanently closed and removed.

On June 17, 2010, VIP mobilized to the site to conduct the closure and removal of one (1) - 1,000 gallon UST. The scope of work to be performed is a site assessment detailing the removal of the tank and the underlying soils. Prior to tank removal, sixty five (65) gallons of gasoline was removed from the tank and properly disposed of at AB Oil Service, LTD of Bohemia. All connections to the UST i.e. fill line, vent line and product piping were cut and removed from the UST. The 1,000 gallon UST was removed, entered and no residual oil or sludge was noted at this time. The interior and exterior of the UST was inspected for holes or cracking. A representative of the SCDHS was present to inspect the tank excavation and the excavated UST. Please note that no holes or cracks were noted. The excavated single walled fiberglass tank was disposed of as garbage.

Once the tank was removed from the subsurface, the side walls and bottom of the tank excavation were field screened for the presence of Volatile Organic Compounds (VOCs) utilizing a properly calibrated Photo-Ionization (PID) meter. Total depth of the excavation was approximately eight (8) feet below grade. At this time, no positive readings were displayed with the PID and no olfactory or visual evidence of soil contamination was noted. Upon SCDHS permission, the tank excavation was backfilled. Please see the SCDHS Tank Removal Checklist enclosed.

Prior to backfilling, one (1) composite soil sample was collected from the sidewalls and bottom of the tank excavation area. The sample was submitted for analysis to Phoenix Environmental Laboratories, Inc. (NYSDOH certified), Manchester, CT. The sample was analyzed according to Article 12 of the SCDHS Sanitary Code and in accordance with the New York State Department of Environmental Conservation (NYSDEC) Technical & Administrative Guidance Memorandum (TAGM) # 4046 utilizing EPA Method 8260 STARS for Volatile Organic Compounds (VOCs) and EPA Method 8270 STARS for Semi-Volatile Organic Compounds (SVOCs).

Laboratory analytical results of the composite soil sample collected from the tank excavation on June 17, 2010 did not detect any VOC or SVOC concentrations above laboratory detection limits therefore levels are below the SCDHS and NYSDEC Guidance Values. Please see the laboratory analytical results and chain of custody documentation enclosed.

Groundwater was not encountered during the tank excavation activities. Please note that based on USGS groundwater wells, groundwater is estimated to be approximately fifteen (15) feet below grade. Based on the prescribed information, C2G requests no further action regarding the closure and removal of the 1,000 gallon gasoline UST formerly associated with the above noted address.

Thank you for your time with this project. Please do not hesitate to contact our office at anytime regarding the above information.

Regards,

Joseph Gavin Geologist

DECEIVED
JUL - 7 2010

Cc: Mr. William Skeats, Suffolk County Department of Health Services

Mr. Robert Stasio, VIP Plumbing and Heating Contracting, Inc.

Work Order	71945	Date/Time Pickup:	6/17/2010	08:00 AM	Date Created: Date Printed:	06/16/201 06/16/201
Generator ID Generator EPA ID Address 1 Address 2 City, St Zip Site Contact Site Phone Hours	LAKELAN	HILLS GOLF CLUB. ID AVENUE E. NY 11782 SIO	Fa Sta Ad Ad Cit Dri	cility A E ste ID NY dress 1 159 dress 2 y, St Zip Bor	3 OIL SERVICE LTD. 3 OIL SERVICE LTD. 1987023371 19 Ocean Avenue 1emia, NY 11716 3 HAEL ROSATI	
Bill Method PO Num Bustomer Num Bill To Address 1	Bill 16281 VIP ENVII 209 SQU	RØNMENTAL SERVICE: FH FEHR		gctions		
Address 2 Jity, St Zip		RE: NY 11706				
	LOCATE	RY(1) 1000 GALLONG) D'AT MAINTENANCE B	ARN (SEE ATTA	(CHED MAP)		
WT	ŊĖ	ر ان ان ان ا				234 A
ustomer Signature	的 更加及第2	Date	Driver	Signature	Service Control of the Service	Section Area
iustomer Sighature La bl. 4: 4 rint Name	57	Date 4577	Drivers ò Truck N	bignature 2 Jumper		Daté

ş

THIS MEMORANDUM is an ecknowledgement that a bill of fading has been issued and is or duplicate, covering the property named herein, and is intended a	not the Original BIN of Lading. not a copy solely for filing ar record.	
	Shipper's No	Sign of
Carrier SCA RECEIVED, subject to individually determined rates or contracts that have been agreed upon in writicesteblished by the carrier and are available to the shipper, on request, and all applicable state and fe	Carrier's No.	the rates, classifications and rules that have oee
at	from	stined as indicated below, which sald company to carry to delivery at said destination, if on its y portion of said route to destination, and as to ited by law, whether printed or written, herein
TO:	FROM:	
Street Street	Shipper Street / Shipper Street	The state of the s
Destination Zip Zip	Origin (A) V (A)	Zip 14766
Delivering Carrier	Vehicle Number U	.S. DOT Hazmat Reg. No.
Number and Type HM I.D. Description of Art	Hazard Pkg. Total Class Grp. Grp.	Quantity Weight Class or tivity) Correction Rate
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SG
Remit COD to: Address: City: State: Zip:	Subject to Section 7 of conditions, if this shipment is to be delivered to the consigner without recourse on the consignor, the consignor shall sign the following statement: The center shall not make delivery of this shipment without payment of freight and all	Prepaid L
NOTE: Where the rate is dependent on value, shippers are required to state specifically in writing the agreed or declared value of the property. The agreed or declared value of the property is hereby specifically stated by the shipper to be not exceeding \$ Per	TOTAL CHA (Signature of Consignor)	Prepaid Collect
This is to certify that the above-named materials are properly classified, described, packaged, murke and labeled, and are in proper condition for transportation according to the applicable regulations of the Department of Transportation. For	PLACARDS SHPPI	BY SHIPPER BY CARRIER
SHIPPER: DATE: 6	CARRIER:	DATE:
EMERGENCY RESPONSE (Monitored at all times the Hazardous Mate including storage incidental to transportati	erial is in transportation on (172.604).
-BLS-C4 970 (Rev. 2/07)	4,	

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES DIVISION OF ENVIRONMENTAL QUALITY OFFICE OF POLLUTION CONTROL

TANK REMOVAL CHECKLIST

FILE REF NO: 67235	REG NO:	3	DATE:
FACILITY NAME:	- <u>1. 30 mil 14:11</u>	is Gally	in ko
FACILITY ADDRESS:	1.APT 6 12-8	, 19:10	ayville
SCTM#_<>>0 1.V.)	<u> </u>	SITE GPS	
TANK # LOCATION	CADACTES	CONTRENTE	DATA DEDITAT
	CAPACITY	CONTENTS	MATERIAL
the substitute of the substitu	/000	405	1" R.F.
		احمر ال	
1. CONDITION OF TANK AND P	IPING: (Note any h	oles) <u> </u>	
			La State of
2. WAS CONTAMINATION NOTE	D WITHIN EXCAVA	ATTON? 'V / N	
		A State State Control of the Control	
All Material Removed Under	_	All and see the control of the contr	adorate transfer signal.
Approximate Amount Of Co	ontaminated Soil F	Removed:c	u yds / tons / drums
Was Ground Water Impacte	d: MY / N	- Water was and the state of th	•
DEC Notified: Y / N (1-	ም <i>ያበበ 457 726</i> 2\ - ፕ	NEC Caill Manches	
·			
3. WERE ALL ASSOCIATED PIPE	S AND VENT LINE	SREMOVED? (Y)	N (If No, explain)
4. NAME OF CONTRACTOR:	NIP	Dob Stal.	2
	· · · · · · · · · · · · · · · · · · ·		
Site Sketch:			
	•		
~ 9 .		ainterarce	
٥.		MARICAARC	13/12/
	Street, on the table to be a second	and the second s	La francisco
·			Excitating 1
			office /
(D)			4
Control of the second	navan ka sasa muhanga kan penasunankan pana sasa sasa sasa sa	يتين دريون موسوست بدائده والديات بالأراد أراء الجام بدايات بالأراب المداد فالمواجد	Comments of the second
	Polena	PRIVAT	
A Copy of This Document Was	Given to:	dest of the	
	á	(Owner's Represent	
Inspector: WILAM	Steel Inspec	ctor's Signature:	MA & Seeding
		<i>Q</i>	The state of the s
	OFF	PICE USE:	
SCDHS Spill Number:			7
		Spills l	Cey:

Monday, June 21, 2010

Attn: Mr. Joe Gavin C2G Environmental Consultants, LLC 165 Sherwood Avenue Farmingdale, NY 11735

Project ID: 10060624 Sample ID#s: AZ15679

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 21, 2010

FOR:

Attn: Mr. Joe Gavin

C2G Environmental Consultants, LLC

165 Sherwood Avenue Farmingdale, NY 11735

Sample Information

Matrix:

SOIL

Location Code:

C2G-FARM

Rush Request:

P.O.#;

Custody Information

Collected by:

Analyzed by:

Received by:

LB

see "By" below

06/17/10

Date

Time 11:00

06/17/10

18:13

Laboratory Data

SDG ID: GAZ15679

Phoenix ID: AZ15679

Project ID:

10060624

Client ID:

COMPOSITE

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	94		%	06/17/10		C/JL	E160.3
Soil Extraction SVOA BN	Completed			06/17/10		QS/D	SW3545
Volatile Organic Compour	ıds						2110010
1,2,4-Trimethylbenzene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
1,3,5-Trimethylbenzene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
Benzene	ND	2.1	ug/Kg	06/18/10		R/J	8021/8260
Ethylbenzene	ND	2.1	ug/Kg	06/18/10		R/J	8021/8260
lsopropylbenzene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
m&p-Xylene	ND	2.1	ug/Kg	06/18/10		R/J	8021/8260
Methyl t-Butyl Ether (MTBE)	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
Naphthalene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
n-Butylbenzene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
n-Propylbenzene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
o-Xylene	ND	2.1	ug/Kg	06/18/10		R/J	8021/8260
p-lsopropýltoluene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
sec-Butylbenzene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
tert-Butylbenzene	ND	1.1	ug/Kg	06/18/10		R/J	8021/8260
Toluene	ND	2.1	ug/Kg	06/18/10		R/J	8021/8260
Total Xylenes	ND	2.1	ug/Kg	06/18/10		R/J	8021/8260
OA/OC Surrogates			• •			100	002 1/0200
% 1,2-Dichlorobenzene-d4	100		%	06/18/10		R/J	8021/8260
% Bromofluorobenzene	88		%	06/18/10		R/J	8021/8260
% Dibromofluoromethane	104		%	06/18/10		R/J	8021/8260
% Toluene-d8	88		%	06/18/10		R/J	8021/8260
Samivalatilas						100	802 1/0200
<u>Semivolatiles</u>							
Acenaphthene	ND	250	ug/Kg	06/18/10		НМ	SW 8270

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Acenaphthylene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Anthracene	ND	250	ug/Kg	06/18/10		HM	SW 8270
Benz(a)anthracene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Benzo(a)pyrene	ND	250	ug/Kg	06/18/10		HM	SW 8270
Benzo(b)fluoranthene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Benzo(ghi)perylene	ND	250	ug/Kg	06/18/10		HM	SW 8270
Benzo(k)fluoranthene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Chrysene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Dibenz(a,h)anthracene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Fluoranthene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Fluorene	ND	250	ug/Kg	06/18/10		HM	SW 8270
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Naphthalene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Phenanthrene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
Pyrene	ND	250	ug/Kg	06/18/10		НМ	SW 8270
OA/OC Surrogates			J J				011 0270
% 2-Fluorobiphenyl	71		% 、	06/18/10		нм	SW 8270
% Nitrobenzene-d5	69		. %	06/18/10		HM	SW 8270
% Terphenyl-d14	77		%	06/18/10		нм	SW 8270

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

June 22, 2010

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 22, 2010

QA/QC Data

SDG I.D.: GAZ15679

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
QA/QC Batch 155615, QC Sample i	No: AZ15366 (AZ15679)							
<u>Volatiles</u>								
1,2,4-Trimethylbenzene	ND	. 86	76	12.3	76	61	21.9	
1,3,5-Trimethylbenzene	ND	86	76	12.3	86	84	2.4	
Benzene	ND	90	85	5.7	91	89	2.2	
Ethylbenzene	ND	91	82	10.4	94	92	2.2	
Isopropylbenzene	ND	82	74	10.3	90	84	6.9	
m&p-Xylene	ND	88	8(8.3	86	77	11.0	
Methyl t-butyl ether (MTBE)	ND	96	72	28.6	75	89	17.1	
Naphthalene	ND	59	88	39.5	79	59	29.0	
n-Butylbenzene	ND	79	67	16.4	75	65	14.3	2,3
n-Propylbenzene	ND	86	75	13.7	84	78	7.4	,-
o-Xylene	ND	90	81	10.5	92	91	1.1	
p-Isopropyltoluene	NÐ	86	74	15.0	85	84	1.2	
sec-Butylbenzene	ND	89	77	14.5	86	79	8.5	
tert-Butylbenzene	ND	91	81	11.6	92	90	2.2	
Toluene	ND	88	81	8.3	88	87	1.1	
% 1,2-dichlorobenzene-d4	100	98	97	1.0	98	95	3.1	
% Bromofluorobenzene	86	96	96	0.0	97	98	1.0	
% Dibromofluoromethane	101	109	108	0.9	102	105	2.9	
% Toluene-d8	93	96	96	0.0	94	97	3.1	
QA/QC Batch 155469, QC Sample N	lo: AZ15395 (AZ15679)							
Polynuclear Aromatic HC								
Acenaphthene	ND	66	67	1.5	71	78	9.4	
Acenaphthylene	ND	65	66	1.5	68	73	7.1	
Anthracene	NĐ	77	78	1.3	82	89	8.2	
Benz(a)anthracene	ND	72	72	0.0	75	82	8.9	
Benzo(a)pyrene	ND	73	73	0.0	76	85	11.2	
Benzo(b)fluoranthene	ND	70	70	0.0	72	82	13.0	
Benzo(ghi)perylene	ND	77	78	1.3	78	80	2.5	
Benzo(k)fluoranthene	ND	74	73	1.4	75	83	10.1	
Chrysene	ND	73	70	4.2	73	79	7.9	
Dibenz(a,h)anthracene	ND	81	85	4.8	85	89	4.6	
Fluoranthene	ND	75	73	2.7	78	84	7.4	
Fluorene	ND	69	71	2.9	73	80	9.2	
Indeno(1,2,3-cd)pyrene	ND	80	82	2.5	83	86	3.6	
Naphthalene	ND	63	65	3.1	68	71	4.3	
Phenanthrene	ND	67	68	1.5	70	76	8.2	
Pyrene	ND	72	70	2.8	74	80	7.8	
% 2-Fluorobíphenyl	66	63	66	4.7	70	73	4.2	
% Nitrobenzene-d5	60	57	62	8.4	65	68	4.5	
% Terphenyl-d14	67	65	65	0.0	71	75	5.5	

QA/QC Data

SDG I.D.: GAZ15679

LCS LCSD LCS MS MS Dup Parameter Blank % % **RPD** Rec % Rec % **RPD**

2 = This parameter is outside laboratory lcs/lcsd specified limits. 3 = This parameter is outside laboratory ms/msd specified limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis/Shiller, Laboratory Director

June 22, 2010

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

June 22, 2010

SDG I.D.: GAZ15679

The samples in this delivery group were received at 4C. (Note acceptance criteria is above freezing up to 6C)

,				Ň	/NJ CH	AIN OF	CUSTOD	NY/NJ CHAIN OF CUSTODY BECORD		Temp	The Pg of	
				587 E	ast Middle	Титойе. Р.	O. Box 370. Man	587 East Middle Turnolke, P.O. Box 370 Manchester, CT 06040		Data Delivery:	7.7.	
Environm	RILLOLLI (ILLA) () () () () () () () () () () () () (Inc.			Email: info@	Email: info@phoenixlabs.com Client Services (80	i: info@phoenixlabs.com Fax (860) 645-6726 Client Services (860) 645-8726	Fax (860) 645-0823) 645-8726		Fax#;		1 1
Customer:	1、71、	14 m			Project:	Ct:	10060624	た e c		Project P.O.	Ö	
Address:	(65 Sherwood)	1173	5		Report to: Invoice to:		J Gravin P (36	7.	~	Phone #:	631-41:01-775	12/2
Sampler's Signature	Client Sample - Information - Identification	- Identification) J	1/1/10	Analysis	`						The state of the s
Martin Code			.		Rednest	ss E			/,	Seginsia .		
DW=drinking water	r WW=wastewater S=soll/solid SL=sludge A=air	ilid O≂oil X≕other	1	•	/					\$ \$ \$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	or those	
Phoenix Sample #	Customer Sample Identification	Sample (Date Sampled	Time					13/10	\$ 205 lis 6 105 105 105 105 105 105 105 105 105 105		Allog Blogg
19em	Composite	11	0	11:00	X					8 8 6 7		
									-			
			-			- -						
			+		+	_						
									-			
								\.				
			+									
			_						_			
									-			
Relinquished by	. Accepted by:			Date:		Tlme:	Turnaround:	3	<u>2</u>	<u></u>	Data Format	
201	Far Willy			0/-7/-9	017	12134		☐ Res. Criteria ☐ Non-Res. Criteria		TAGM 4046 GW	Phoenix Std Report	Ę
	NUCKAN TO THE PROPERTY OF THE	P	7	9	5	18:15	3 Days*	GW Criteria		JNY375 Unrestricted Soil	☐ PDF ☐ GIS/Key	
Comments, Specia	Comments, Special Requirements or Regulations:	15:			-						EQUIS N.! Hazeite Enn	
							- SURCHARGE APPLIES		<u> </u>	NY375 Restricted Non-Residential Soil	NY EZ EDD (ASP)	_
								_			Data Package NJ Reduced Deliv.*	*
		}					State Whe	state Wnere samples were collected:	collect	ipa	NY Enhanced (ASP B)	, (G